Compare commits

...

73 Commits

Author SHA1 Message Date
05cc0c6785 :)
:):):):):):):):):):):):)
2024-03-14 15:46:41 -07:00
a27996882b starighten added, center added, tweakes too both backstage code made but undtestested for some 2024-02-15 20:17:22 -08:00
4dc9b182a7 revert, and speed change 2024-01-30 17:20:35 -08:00
b956adb95a Small speed changes 2024-01-30 17:20:35 -08:00
cb87dceeb8 Merge remote-tracking branch 'origin/branch-cooper-v9.0.1' into branch-cooper-v9.0.1 2024-01-30 15:54:00 -08:00
4855f69efc Updated code allows corner parking 2024-01-30 15:53:16 -08:00
913544f4fd Add red back stage code (work in progress) 2024-01-25 17:15:58 -08:00
e40dd11624 changes, small 2024-01-23 17:08:04 -08:00
7d28e8bd60 meet 3 code 2024-01-18 17:21:45 -08:00
d025c7b106 meet 3 code 2024-01-11 17:00:03 -08:00
8108e5c42f red side perfect (atleast I think) 2024-01-09 17:08:54 -08:00
84aba36915 tweaked 2024-01-04 17:12:27 -08:00
13eebf51b8 launch added 2023-12-14 17:11:34 -08:00
93edbbf45f meet #2 final code 2023-12-12 17:05:15 -08:00
76ca6437ed Merge remote-tracking branch 'origin/branch-cooper-v9.0.1' into branch-cooper-v9.0.1 2023-12-02 11:25:49 -08:00
96345a151c auto works consistantly for 45 and 20 in front 2023-12-02 11:20:27 -08:00
c71019e090 Added team notes and simplified Chassis Robot Driver code 2023-12-02 11:05:30 -08:00
6943172487 Arm function and changes to arm in general 2023-12-02 10:47:59 -08:00
aecb6122b3 red backstage works consistantly for 45 2023-12-02 09:48:51 -08:00
c5bc5df6a3 speed buttons added, extra steps taken out of auto. tweaked 2023-11-30 17:22:05 -08:00
76eac94686 speed buttons added, extra steps taken out of auto. 2023-11-28 16:52:22 -08:00
e6e8a657d7 speed buttons added, extra steps taken out of auto. 2023-11-28 16:33:40 -08:00
a260b373de speed buttons added, extra steps taken out of auto. 2023-11-28 16:27:08 -08:00
0d131c1b1e All autos made and backstage area conistantly getting 45 points, other than Red (Backstage) all untested. 2023-11-27 11:34:59 -08:00
a6ea0fc529 Merge in new changes 2023-11-16 17:14:12 -08:00
e3a3bdfb3b Replaced color sensor with distance sensor 2023-11-16 17:07:36 -08:00
58f738e28d Fix camel casing 2023-11-09 23:20:23 -08:00
7c1a0923e2 Fix camel casing 2023-11-09 14:22:17 -08:00
4b6fd66770 Adding sample code base, still work in progress 2023-11-09 14:21:37 -08:00
8aef2037c5 Fixing variable bug, possible cause of strafing issue? 2023-11-09 14:21:15 -08:00
36d3af564e Removing unused variables 2023-11-09 14:20:34 -08:00
e991c38b72 Commenting a line, is this a bug? 2023-11-09 10:51:43 -08:00
81e0825fea Copy from 9.0.1 to here 2023-11-04 10:08:49 -07:00
a9c0d443eb Copy from 9.0.1 to here 2023-11-04 10:07:31 -07:00
d666d5e9ac Merge pull request 'branch-cooper' (#2) from branch-cooper into branch-cooper-v9.0.1
Reviewed-on: #2
2023-11-04 10:04:15 -07:00
20680c3011 autnomous first meet 2023-11-04 08:58:18 -07:00
17f4fa47dc autnomous first meet 2023-11-04 08:56:52 -07:00
7a861d562e auto blue, and red front have been made not tested but values switched 2023-11-04 08:54:36 -07:00
2b638e1953 auto blue, and red front have been made not tested but values switched 2023-11-03 19:54:05 -07:00
8db63f829c Merge pull request 'Merge of branch-copper with 9.0.1' (#1) from master into branch-cooper-v9.0.1
Reviewed-on: #1
2023-11-03 16:40:44 -07:00
6f5e08e0cd auto blue, and red front have been made not tested but values switched 2023-11-03 16:36:34 -07:00
162922a164 auto blue, and red front have been made not tested but values switched 2023-11-02 20:46:41 -07:00
387cca2ace manual control complete, and states started again 2023-11-02 15:58:45 -07:00
089ca0cf3d manual control complete, and states started again 2023-10-31 17:10:06 -07:00
9a4561b29c arm state machine controls, needs large motor adjustments (see comment in code) 2023-10-29 20:55:39 -07:00
8d880cd330 manual control complete, and states started again 2023-10-26 17:10:57 -07:00
55eacfc391 Add artifact command 2023-10-22 19:37:13 -07:00
45bab85f09 Update gradle path command 2023-10-22 19:20:48 -07:00
aa2d8a2b8a Changing it to gradle 2023-10-22 19:05:00 -07:00
d08f00ce12 Adding example Jenkinsfile 2023-10-22 19:01:34 -07:00
ba5a1102ed Merge remote-tracking branch 'origin/branch-cooper' into branch-carlos 2023-10-22 18:46:46 -07:00
e3469f56c4 More detailed hardware configuration 2023-10-17 17:15:08 -07:00
18418825d2 arm encoders, and states made, not tested 2023-10-17 17:10:53 -07:00
eb81e1b4b6 arm encoders made, tested, and implmented into main code 2023-10-14 11:56:23 -07:00
180f2bd873 arm encoders made, tested, and implmented into main code 2023-10-12 17:13:35 -07:00
69f9264228 Arm function and changes to arm in general 2023-10-10 17:10:23 -07:00
9564e5a539 Merge remote-tracking branch 'origin/branch-cooper' into branch-cooper 2023-10-10 17:05:51 -07:00
35dbc1cc15 arm encoders made, not tested 2023-10-10 17:04:04 -07:00
ab728d975c Merge branch 'branch-cooper' of http://10.37.49.22:3000/SCDS/FtcRobotController into branch-cooper 2023-10-07 13:45:56 -07:00
780f5fdde9 arm holds and autonmous set wtihout the arm implemented 2023-10-07 12:07:18 -07:00
7aa982d2bf added hub section 2023-10-07 11:56:10 -07:00
e65767b2da added hub section 2023-10-07 11:26:37 -07:00
71f2eafbd6 updated servo name 2023-10-07 10:54:12 -07:00
ed1868c682 documented configurations from google sheet 2023-10-07 10:23:50 -07:00
82cecba8f1 Added new file with arm servo code 2023-10-07 08:54:23 -07:00
9aab8fadf1 color read up and knows sides 2023-10-05 17:12:37 -07:00
c3d8dc6b11 color read up, not tested 2023-10-03 17:05:29 -07:00
ee86476ca3 moved the robot to the spike marks 2023-10-03 16:28:59 -07:00
70ac99c5b3 have directional functions set for each direction 2023-09-28 17:10:30 -07:00
c3da4e525d fixed wheel rotation so its going forward 2023-09-28 16:03:30 -07:00
dc530b52b7 fixed wheel rotation so its going forward 2023-09-28 15:53:18 -07:00
7b1b952a6c worked on encoders for all four wheels 2023-09-26 17:15:47 -07:00
ffd94c28eb Add branch and commit sample change 2023-09-06 20:51:08 +00:00
28 changed files with 5036 additions and 79 deletions

31
HARDWARE.md Normal file
View File

@ -0,0 +1,31 @@
# FTC Hardware Config 2023
**DISCLAIMER:** View the robot like this.
![Bird's eye view of robot.](/Robot.png "Bird's eye view of robot")
Configuration Name: **cometBoTsChassis2023**
There are two robots: 14493-DS, and FTC-992M.
Below are the following configurations for our robots
| physical port | hub | robot part | robot part location | robot software config name |
|---------------|-----------|----------------------------|-------------------------------|----------------------------|
| motor0 | control | UltraPlanetary HD hex motor | right front leg frame | Drive front rt |
| motor1 | control | UltraPlanetary HD hex motor | right back leg frame | Drive back rt |
| motor2 | control | UltraPlanetary HD hex motor | left front leg frame | Drive front lt |
| motor3 | control | UltraPlanetary HD hex motor | left back leg frame | Drive back lt |
| I2C B0 | control | Color sensor V3 | Left outside leg frame | color left |
| I2C B1 | control | Color sensor V3 | Right outside leg frame | color right |
| I2C B0 | expansion | 2m distance sensor | Middle Back outside leg frame | distance |
| motor0 | expansion | UltraPlanetary HD hex motor | left back arm frame | arm raise |
| motor1 | expansion | Core Hex Motor | right back arm frame | hang |
| motor3 | expansion | Digital device | arm frame back right | axle encoder |
| Servo 0 | expansion | Servo | on arm | wrist |
| Servo 1 | expansion | Servo | on arm | gripper |

17
Jenkinsfile vendored Normal file
View File

@ -0,0 +1,17 @@
pipeline {
agent {
docker { image 'mingc/android-build-box' }
}
stages {
stage('Gradle Build') {
steps {
sh './gradlew clean build'
}
}
}
post {
always {
archiveArtifacts artifacts: 'TeamCode/build/outputs/apk/debug/*.apk', fingerprint: true
}
}
}

4
NOTES.md Normal file
View File

@ -0,0 +1,4 @@
- Refactor of code
- Possibly establish patterns
- Also, establish github for students as an element of a professional portfolio (laura)
-

View File

@ -1,4 +1,4 @@
## NOTICE
## SCDS NOTICE
This repository contains the public FTC SDK for the CENTERSTAGE (2023-2024) competition season.

BIN
Robot.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 865 KiB

View File

@ -26,8 +26,4 @@ android {
dependencies {
implementation project(':FtcRobotController')
annotationProcessor files('lib/OpModeAnnotationProcessor.jar')
implementation 'org.apache.commons:commons-math3:3.6.1'
implementation 'com.fasterxml.jackson.core:jackson-databind:2.12.7'
implementation 'com.acmerobotics.roadrunner:core:0.5.6'
}

View File

@ -0,0 +1,195 @@
package org.firstinspires.ftc.teamcode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DcMotorSimple;
import com.qualcomm.robotcore.hardware.Gamepad;
import com.qualcomm.robotcore.hardware.Servo;
import com.qualcomm.robotcore.util.ElapsedTime;
@TeleOp( name = "ArmState")
public class
ArmStates extends OpMode {
DcMotor arm;
Servo wrist;
static final double TICKS_TO_DEGREES = 0.07462686567;
static final double COUNTS_PER_MOTOR_REV = 537.6;
static final double DRIVE_GEAR_REDUCTION = 60;
static final double COUNTS_PER_ARM_INCH = (COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCTION) / (2.75 * Math.PI);
/**
* this function takes a long milliseconds parameter and sleeps
*
* @param millis milliseconds to sleep
*/
public void sleepmillis(long millis) {
try {
Thread.sleep(millis);
} catch (Exception e) {
}
}
/**
* stops all drive motors
*/
public void off() {
arm.setPower(0);
}
/**
* User defined init method
* This method will be called once when the INIT button is pressed.
*/
public void init() {
telemetry.addData("Status", "In Init()");
telemetry.update();
arm = hardwareMap.dcMotor.get("arm raise");
wrist = hardwareMap.servo.get("wrist");
arm.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
}
/**
* User defined init_loop method
* This method will be called repeatedly when the INIT button is pressed.
* This method is optional. By default this method takes no action.
*/
public void init_loop() {
// Wait for the game to start (driver presses PLAY)
telemetry.addData("Status", "Initialized");
telemetry.update();
}
/**
* User defined start method.
* This method will be called once when the PLAY button is first pressed.
* This method is optional. By default this method takes not action. Example usage: Starting another thread.
*/
public void start() {
}
/**
* User defined stop method
* This method will be called when this op mode is first disabled.
* The stop method is optional. By default this method takes no action.
*/
public void stop() {
}
/**
* User defined loop method.
* This method will be called repeatedly in a loop while this op mode is running
*/
public int armState = 0;
public void loop() {
int currentArmState = armState;
telemetry.addData("state", armState);
telemetry.addData("arm pos", arm.getCurrentPosition());
telemetry.update();
//Something is wrong, the arm is going the wrong way. Maybe it's just my robot, but you should look at it
if (gamepad2.x) {
armState = 1;
}
if (gamepad2.y) {
armState = 2;
}
if (gamepad2.b) {
armState = 3;
}
if (gamepad2.a)
{
armState = 0;
}
if (gamepad2.right_bumper) {
armState += 1;
}
if (gamepad2.left_bumper) {
armState -= 1;
}
if (armState != currentArmState) {
updateState();
}
}
public void armDriveWithEncoder(double speed,
int ticks) {
// Determine new target position, and pass to motor controller
arm.setTargetPosition(ticks);
// Turn On RUN_TO_POSITION
arm.setMode(DcMotor.RunMode.RUN_TO_POSITION);
// reset the timeout time and start motion.
arm.setPower(Math.abs(speed));
while //(opModeIsActive() &&
//(runtime.seconds() < timeoutS) &&
(arm.isBusy()) {
telemetry.addData("Running to", " %7d ", ticks);
telemetry.addData("Currently at", " %7d", arm.getCurrentPosition());
telemetry.update();
}
arm.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
arm.setPower(0);
// Turn off RUN_TO_POSITION
arm.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
}
public void raisearm(int degrees) {
arm.setDirection(DcMotor.Direction.REVERSE);
armDriveWithEncoder(.05, degrees);
}
public void updateState() {
if (armState == 0) {
// arm state 0 means on the ground with gripper down
wrist.setPosition(.5);
raisearm(0);
telemetry.addData("state", 0);
}
arm.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
arm.setPower(0);
if (armState == 1) {
// arm state 1 is for driving
raisearm(200);
telemetry.addData("state", 1);
}
arm.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
arm.setPower(0);
if (armState == 2) {
raisearm(697);
wrist.setPosition(0);
raisearm(697);
telemetry.addData("state", 2);
}
arm.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
arm.setPower(.0);
if (armState == 3) {
raisearm(780);
telemetry.addData("state", 3);
telemetry.addData("arm pos", arm.getCurrentPosition());
}
arm.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
arm.setPower(0);
}
}

View File

@ -0,0 +1,171 @@
/* Copyright (c) 2021 FIRST. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided that
* the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.firstinspires.ftc.teamcode;
import com.qualcomm.robotcore.eventloop.opmode.Disabled;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.util.ElapsedTime;
/**
* This file contains an example of a Linear "OpMode".
* An OpMode is a 'program' that runs in either the autonomous or the teleop period of an FTC match.
* The names of OpModes appear on the menu of the FTC Driver Station.
* When a selection is made from the menu, the corresponding OpMode is executed.
*
* This particular OpMode illustrates driving a 4-motor Omni-Directional (or Holonomic) robot.
* This code will work with either a Mecanum-Drive or an X-Drive train.
* Both of these drives are illustrated at https://gm0.org/en/latest/docs/robot-design/drivetrains/holonomic.html
* Note that a Mecanum drive must display an X roller-pattern when viewed from above.
*
* Also note that it is critical to set the correct rotation direction for each motor. See details below.
*
* Holonomic drives provide the ability for the robot to move in three axes (directions) simultaneously.
* Each motion axis is controlled by one Joystick axis.
*
* 1) Axial: Driving forward and backward Left-joystick Forward/Backward
* 2) Lateral: Strafing right and left Left-joystick Right and Left
* 3) Yaw: Rotating Clockwise and counter clockwise Right-joystick Right and Left
*
* This code is written assuming that the right-side motors need to be reversed for the robot to drive forward.
* When you first test your robot, if it moves backward when you push the left stick forward, then you must flip
* the direction of all 4 motors (see code below).
*
* Use Android Studio to Copy this Class, and Paste it into your team's code folder with a new name.
* Remove or comment out the @Disabled line to add this opmode to the Driver Station OpMode list
*/
@TeleOp(name=" CR file", group="Linear Opmode")
@Disabled
public class BasicOmniOpMode_Linear extends LinearOpMode {
// Declare OpMode members for each of the 4 motors.
private ElapsedTime runtime = new ElapsedTime();
private DcMotor leftFrontDrive = null;
private DcMotor leftBackDrive = null;
private DcMotor rightFrontDrive = null;
private DcMotor rightBackDrive = null;
public class run{
}
@Override
public void runOpMode() {
// Initialize the hardware variables. Note that the strings used here must correspond
// to the names assigned during the robot configuration step on the DS or RC devices.
leftFrontDrive = hardwareMap.get(DcMotor.class, "left_front_drive");
leftBackDrive = hardwareMap.get(DcMotor.class, "left_back_drive");
rightFrontDrive = hardwareMap.get(DcMotor.class, "right_front_drive");
rightBackDrive = hardwareMap.get(DcMotor.class, "right_back_drive");
// ########################################################################################
// !!! IMPORTANT Drive Information. Test your motor directions. !!!!!
// ########################################################################################
// Most robots need the motors on one side to be reversed to drive forward.
// The motor reversals shown here are for a "direct drive" robot (the wheels turn the same direction as the motor shaft)
// If your robot has additional gear reductions or uses a right-angled drive, it's important to ensure
// that your motors are turning in the correct direction. So, start out with the reversals here, BUT
// when you first test your robot, push the left joystick forward and observe the direction the wheels turn.
// Reverse the direction (flip FORWARD <-> REVERSE ) of any wheel that runs backward
// Keep testing until ALL the wheels move the robot forward when you push the left joystick forward.
leftFrontDrive.setDirection(DcMotor.Direction.REVERSE);
leftBackDrive.setDirection(DcMotor.Direction.REVERSE);
rightFrontDrive.setDirection(DcMotor.Direction.FORWARD);
rightBackDrive.setDirection(DcMotor.Direction.FORWARD);
// Wait for the game to start (driver presses PLAY)
telemetry.addData("Status", "Initialized");
telemetry.update();
waitForStart();
runtime.reset();
// run until the end of the match (driver presses STOP)
while (opModeIsActive()) {
double max;
// POV Mode uses left joystick to go forward & strafe, and right joystick to rotate.
double axial = -gamepad1.left_stick_y; // Note: pushing stick forward gives negative value
double lateral = gamepad1.left_stick_x;
double yaw = gamepad1.right_stick_x;
// Combine the joystick requests for each axis-motion to determine each wheel's power.
// Set up a variable for each drive wheel to save the power level for telemetry.
double leftFrontPower = axial + lateral + yaw;
double rightFrontPower = axial - lateral - yaw;
double leftBackPower = axial - lateral + yaw;
double rightBackPower = axial + lateral - yaw;
// Normalize the values so no wheel power exceeds 100%
// This ensures that the robot maintains the desired motion.
max = Math.max(Math.abs(leftFrontPower), Math.abs(rightFrontPower));
max = Math.max(max, Math.abs(leftBackPower));
max = Math.max(max, Math.abs(rightBackPower));
if (max > 1.0) {
leftFrontPower /= max;
rightFrontPower /= max;
leftBackPower /= max;
rightBackPower /= max;
}
// This is test code:
//
// Uncomment the following code to test your motor directions.
// Each button should make the corresponding motor run FORWARD.
// 1) First get all the motors to take to correct positions on the robot
// by adjusting your Robot Configuration if necessary.
// 2) Then make sure they run in the correct direction by modifying the
// the setDirection() calls above.
// Once the correct motors move in the correct direction re-comment this code.
/*
leftFrontPower = gamepad1.x ? 1.0 : 0.0; // X gamepad
leftBackPower = gamepad1.a ? 1.0 : 0.0; // A gamepad
rightFrontPower = gamepad1.y ? 1.0 : 0.0; // Y gamepad
rightBackPower = gamepad1.b ? 1.0 : 0.0; // B gamepad
*/
// Send calculated power to wheels
leftFrontDrive.setPower(leftFrontPower);
rightFrontDrive.setPower(rightFrontPower);
leftBackDrive.setPower(leftBackPower);
rightBackDrive.setPower(rightBackPower);
// Show the elapsed game time and wheel power.
telemetry.addData("Status", "Run Time: " + runtime.toString());
telemetry.addData("Front left/Right", "%4.2f, %4.2f", leftFrontPower, rightFrontPower);
telemetry.addData("Back left/Right", "%4.2f, %4.2f", leftBackPower, rightBackPower);
telemetry.update();
}
}}

View File

@ -0,0 +1,518 @@
/* Copyright (c) 2017 FIRST. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided that
* the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.firstinspires.ftc.teamcode;
import android.annotation.SuppressLint;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.hardware.ColorSensor;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DcMotorSimple;
import com.qualcomm.robotcore.hardware.DistanceSensor;
import com.qualcomm.robotcore.hardware.Servo;
import com.qualcomm.robotcore.util.ElapsedTime;
import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;
/**
* This file illustrates the concept of driving a path based on encoder counts.
* The code is structured as a LinearOpMode
*
* The code REQUIRES that you DO have encoders on the wheels,
* otherwise you would use: RobotAutoDriveByTime;
*
* This code ALSO requires that the drive Motors have been configured such that a positive
* power command moves them forward, and causes the encoders to count UP.
*
* The desired path in this example is:
* - Drive forward for 48 inches
* - Spin right for 12 Inches
* - Drive Backward for 24 inches
* - Stop and close the claw.
*
* The code is written using a method called: encoderDrive(speed, leftInches, rightInches, timeoutS)
* that performs the actual movement.
* This method assumes that each movement is relative to the last stopping place.
* There are other ways to perform encoder based moves, but this method is probably the simplest.
* This code uses the RUN_TO_POSITION mode to enable the Motor controllers to generate the run profile
*
* Use Android Studio to Copy this Class, and Paste it into your team's code folder with a new name.
* Remove or comment out the @Disabled line to add this opmode to the Driver Station OpMode list
*/
@Autonomous(name="Blue", group="Robot")
//@Disabled
public class Blue extends LinearOpMode {
/* Declare OpMode members. */
private DcMotor leftDrive = null;
private DcMotor rightDrive = null;
private DcMotor backrightDrive = null;
private DcMotor backleftDrive = null;
private DistanceSensor distanceRight = null;
private DistanceSensor distanceLeft = null;
private Servo wrist = null;
private Servo gripper = null;
private DcMotor arm = null;
private DistanceSensor distance = null;
private ElapsedTime runtime = new ElapsedTime();
// Calculate the COUNTS_PER_INCH for your specific drive train.
// Go to your motor vendor website to determine your motor's COUNTS_PER_MOTOR_REV
// For external drive gearing, set DRIVE_GEAR_REDUCTION as needed.
// For example, use a value of 2.0 for a 12-tooth spur gear driving a 24-tooth spur gear.
// This is gearing DOWN for less speed and more torque.
// For gearing UP, use a gear ratio less than 1.0. Note this will affect the direction of wheel rotation.
static final double COUNTS_PER_MOTOR_REV = 537.6; // eg: TETRIX Motor Encoder
static final double DRIVE_GEAR_REDUCTION = 1.0; // No External Gearing.
static final double WHEEL_DIAMETER_INCHES = 3.77953; // For figuring circumference
static final double COUNTS_PER_INCH = (COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCTION) /
(WHEEL_DIAMETER_INCHES * Math.PI);
static final double COUNTS_PER_ARM_INCH = (COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCTION) / (2.7 * Math.PI);
static final double DRIVE_SPEED = 0.3;
static final double DRIVE_SPEED_SLOW = 0.2;
static final double TURN_SPEED = 0.4;
static final double LONG_TIMEOUT = 1000;
static final double DEGREE_TOO_DISTANCE = 0.21944444444;
static final double ARM_SPEED = .1;
static final double TICKS_TO_DEGREES = 0.07462686567;
@Override
public void runOpMode()
{
hardwareinit();
// Send telemetry message to indicate successful Encoder reset
/* telemetry.addData("Starting at", "%7d :%7d",
leftDrive.getCurrentPosition(),
rightDrive.getCurrentPosition(),
backleftDrive.getCurrentPosition(),
backrightDrive.getCurrentPosition());*/
telemetry.update();
// Wait for the game to start (driver presses PLAY)
waitForStart();
{
executeAuto();
}
// Step through each leg of the path,
// Note: Reverse movement is obtained by setting a negative distance (not speed)
}
//
public void driveForward(double distance)
{
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT, false); // S1: Forward 47 Inches with 5 Sec timeout
}
public void straightLeft(double distance)
{
leftDrive.setDirection(DcMotor.Direction.FORWARD);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.FORWARD);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT, true);
}
public void straightLeftOnPower(double speed) {
leftDrive.setDirection(DcMotor.Direction.FORWARD);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.FORWARD);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
leftDrive.setPower(speed * 1.05);
rightDrive.setPower(speed * 1.05);
backrightDrive.setPower(speed);
backleftDrive.setPower(speed);
}
public void straightRight(double distance)
{
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.REVERSE);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.FORWARD);
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT, true);
}
public void turnLeft(double degrees)
{
leftDrive.setDirection(DcMotor.Direction.FORWARD);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.FORWARD);
double turning_distance = degrees * DEGREE_TOO_DISTANCE;
encoderDrive(DRIVE_SPEED, turning_distance, turning_distance, LONG_TIMEOUT, false);
}
public void turnRight(double degrees) {
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.REVERSE);
backrightDrive.setDirection(DcMotor.Direction.FORWARD);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
double turning_distance = degrees * DEGREE_TOO_DISTANCE;
encoderDrive(DRIVE_SPEED, turning_distance, turning_distance, LONG_TIMEOUT, false);
}
public void straighten(Double distance)
{
driveForward(0);
double D1 = distanceLeft.getDistance(DistanceUnit.INCH);
driveForward(distance);
double D2 = distanceLeft.getDistance(DistanceUnit.INCH);
double rad = Math.atan2(D1 - D2, distance);
double degrees = Math.toDegrees(rad);
turnRight(degrees);
telemetry.addData("d1", D1);
telemetry.addData("d2", D2);
telemetry.addData("Calibration deg", degrees);
telemetry.update();
sleep(1000);
}
public void centerLeft()
{
double leftDistance = distanceLeft.getDistance(DistanceUnit.INCH);
straightLeft(leftDistance - 3);
telemetry.addData("leftDistance",leftDistance);
telemetry.addData("moving left x inches",leftDistance - 3);
telemetry.update();
straightLeft(0.0);
sleep(1000);
}
public void raisearm(int degrees) {
armEncoder(ARM_SPEED, degrees*TICKS_TO_DEGREES, LONG_TIMEOUT);
}
public void hardwareinit()
{
leftDrive = hardwareMap.get(DcMotor.class, "Drive front lt");
rightDrive = hardwareMap.get(DcMotor.class, "Drive front rt");
backleftDrive = hardwareMap.get(DcMotor.class, "Drive back lt");
backrightDrive = hardwareMap.get(DcMotor.class, "Drive back rt");
distanceRight = hardwareMap.get(DistanceSensor.class, "color right");
distanceLeft = hardwareMap.get(DistanceSensor.class, "color left");
gripper = hardwareMap.get(Servo.class, "gripper");
arm = hardwareMap.get(DcMotor.class, "arm raise");
wrist = hardwareMap.get(Servo.class, "wrist");
distance = hardwareMap.get(DistanceSensor.class, "distance");
sleep(1000);
// To drive forward, most robots need the motor on one side to be reversed, because the axles point in opposite directions.
// When run, this OpMode should start both motors driving forward. So adjust these two lines based on your first test drive.
// Note: The settings here assume direct drive on left and right wheels. Gear Reduction or 90 Deg drives may require direction flips
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
arm.setDirection(DcMotor.Direction.REVERSE);
leftDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
rightDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
backleftDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
backrightDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
arm.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
leftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
rightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backrightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backleftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
arm.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
}
public void testWrist()
{
wrist.setPosition(0);
sleep(3000);
wrist.setPosition(1);
sleep(3000);
}
public void testGripper()
{
gripper.setPosition(0.5);
}
@SuppressLint("SuspiciousIndentation")
public void executeAuto()
{
while (true)
{
int distright = (int)distanceRight.getDistance(DistanceUnit.INCH);
telemetry.addData("right dist", distright);
telemetry.update();
}
// arm.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
// driveForward(26);
// sleep(500);
//
// int distanceleft = (int)distanceLeft.getDistance(DistanceUnit.INCH);
// int distanceright = (int)distanceRight.getDistance(DistanceUnit.INCH);
// telemetry.addData("color left sensor",distanceleft);
// telemetry.addData("color right sensor",distanceright);
// telemetry.update();
// if (distanceleft < 7)
// {
// telemetry.addData("postion","left");
// telemetry.update();
// turnLeft(90);
// straightLeft(2);
// driveForward(6.5);
// raisearm(45);
// arm.setPower(0);
// sleep(500);
// driveForward(-20);
//
// do {
// straightLeftOnPower(DRIVE_SPEED_SLOW);
// distanceleft = (int) distanceLeft.getDistance(DistanceUnit.INCH);
//
// } while (distanceleft >= 4);
// straighten(12.0);
// centerLeft();
// driveForward(88);
// sleep(1000);
// wrist.setPosition(.465);
// gripper.setPosition(1);
// sleep(1000);
// driveForward(-3);
// terminateOpModeNow();
//
//
//
//
// }
// if (distanceright < 7)
// {
// telemetry.addData("postion", "right");
// telemetry.update();
// straightRight(12);
// raisearm(80);
// arm.setPower(0);
// driveForward(-22);
// turnLeft(90);
// do {
// straightLeftOnPower(DRIVE_SPEED_SLOW);
// distanceleft = (int) distanceLeft.getDistance(DistanceUnit.INCH);
//
// } while (distanceleft >= 6);
// straighten(12.0);
// centerLeft();
// driveForward(98);
// sleep(1000);
// wrist.setPosition(.465);
// gripper.setPosition(1);
// sleep(1000);
// driveForward(-3);
// terminateOpModeNow();
//
//
// }
// else
// telemetry.addData("postion","center");
// telemetry.update();
// driveForward(3.5);
// raisearm(80);
// arm.setPower(0);
// driveForward(-8);
// turnLeft(90);
// driveForward(-12);
// do {
// straightLeftOnPower(DRIVE_SPEED_SLOW);
// distanceleft = (int) distanceLeft.getDistance(DistanceUnit.INCH);
//
// } while (distanceleft >= 6);
// straighten(12.0);
// centerLeft();
// driveForward(88);
// sleep(1000);
// wrist.setPosition(.465);
// gripper.setPosition(1);
// sleep(1000);
// driveForward(-3);
// terminateOpModeNow();
//Values were created from robot with wheel issues 9/28/23
// pause to display final telemetry message.
}
/*
* Method to perform a relative move, based on encoder counts.
* Encoders are not reset as the move is based on the current position.
* Move will stop if any of three conditions occur:
* 1) Move gets to the desired position
* 2) Move runs out of time
* 3) Driver stops the opmode running.
*/
public void encoderDrive(double speed,
double leftInches, double rightInches,
double timeoutS, boolean addJuice) {
int newLeftTarget;
int newRightTarget;
int newBackLeftTarget;
int newbackRightTarget;
if (opModeIsActive()) {
// Determine new target position, and pass to motor controller
newLeftTarget = leftDrive.getCurrentPosition() + (int) (leftInches * COUNTS_PER_INCH);
newRightTarget = rightDrive.getCurrentPosition() + (int) (rightInches * COUNTS_PER_INCH);
newBackLeftTarget = backleftDrive.getCurrentPosition() + (int) (leftInches * COUNTS_PER_INCH);
newbackRightTarget = backrightDrive.getCurrentPosition() + (int) (rightInches * COUNTS_PER_INCH);
leftDrive.setTargetPosition(newLeftTarget);
rightDrive.setTargetPosition(newRightTarget);
backrightDrive.setTargetPosition(newbackRightTarget);
backleftDrive.setTargetPosition(newBackLeftTarget);
// Turn On RUN_TO_POSITION
leftDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
rightDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
backrightDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
backleftDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
// reset the timeout time and start motion.
runtime.reset();
if(addJuice) {
leftDrive.setPower(Math.abs(speed * 1.05));
rightDrive.setPower(Math.abs(speed * 1.05));
} else {
leftDrive.setPower(Math.abs(speed));
rightDrive.setPower(Math.abs(speed));
}
backrightDrive.setPower(Math.abs(speed));
backleftDrive.setPower(Math.abs(speed));
// keep looping while we are still active, and there is time left, and both motors are running.
// Note: We use (isBusy() && isBusy()) in the loop test, which means that when EITHER motor hits
// its target position, the motion will stop. This is "safer" in the event that the robot will
// always end the motion as soon as possible.
// However, if you require that BOTH motors have finished their moves before the robot continues
// onto the next step, use (isBusy() || isBusy()) in the loop test.
while (opModeIsActive() &&
(runtime.seconds() < timeoutS) &&
(leftDrive.isBusy() && rightDrive.isBusy() && backleftDrive.isBusy() && backrightDrive.isBusy() && backrightDrive.isBusy())) {
// Display it for the driver.
telemetry.addData("Running to", " %7d :%7d", newLeftTarget, newRightTarget);
telemetry.addData("Currently at", " at %7d :%7d",
leftDrive.getCurrentPosition(), rightDrive.getCurrentPosition(), backrightDrive.getCurrentPosition(), backleftDrive.getCurrentPosition());
telemetry.update();
}
leftDrive.setPower(0);
rightDrive.setPower(0);
backrightDrive.setPower(0);
backleftDrive.setPower(0);
// Turn off RUN_TO_POSITION
leftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
rightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backleftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backrightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
sleep(250); // optional pause after each move.
}
}
public void armEncoder(double speed,
double Inches, double timeoutS) {
int newarmTarget;
if (opModeIsActive()) {
// Determine new target position, and pass to motor controller
newarmTarget = arm.getCurrentPosition() + (int) (Inches * COUNTS_PER_ARM_INCH);
arm.setTargetPosition(newarmTarget);
// Turn On RUN_TO_POSITION
arm.setMode(DcMotor.RunMode.RUN_TO_POSITION);
// reset the timeout time and start motion.
runtime.reset();
arm.setPower(Math.abs(speed));
// keep looping while we are still active, and there is time left, and both motors are running.
// Note: We use (isBusy() && isBusy()) in the loop test, which means that when EITHER motor hits
// its target position, the motion will stop. This is "safer" in the event that the robot will
// always end the motion as soon as possible.
// However, if you require that BOTH motors have finished their moves before the robot continues
// onto the next step, use (isBusy() || isBusy()) in the loop test.
while (opModeIsActive() &&
(runtime.seconds() < timeoutS) &&
(arm.isBusy())) {
// Display it for the driver.
telemetry.addData("Running to", " %7d", newarmTarget);
telemetry.addData("Currently at", " at %7d",
arm.getCurrentPosition());
telemetry.update();
}
arm.setPower(0);
// Turn off RUN_TO_POSITION
arm.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
}
}
}

View File

@ -0,0 +1,468 @@
/* Copyright (c) 2017 FIRST. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided that
* the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.firstinspires.ftc.teamcode;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DistanceSensor;
import com.qualcomm.robotcore.hardware.Servo;
import com.qualcomm.robotcore.util.ElapsedTime;
import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;
/**
* This file illustrates the concept of driving a path based on encoder counts.
* The code is structured as a LinearOpMode
*
* The code REQUIRES that you DO have encoders on the wheels,
* otherwise you would use: RobotAutoDriveByTime;
*
* This code ALSO requires that the drive Motors have been configured such that a positive
* power command moves them forward, and causes the encoders to count UP.
*
* The desired path in this example is:
* - Drive forward for 48 inches
* - Spin right for 12 Inches
* - Drive Backward for 24 inches
* - Stop and close the claw.
*
* The code is written using a method called: encoderDrive(speed, leftInches, rightInches, timeoutS)
* that performs the actual movement.
* This method assumes that each movement is relative to the last stopping place.
* There are other ways to perform encoder based moves, but this method is probably the simplest.
* This code uses the RUN_TO_POSITION mode to enable the Motor controllers to generate the run profile
*
* Use Android Studio to Copy this Class, and Paste it into your team's code folder with a new name.
* Remove or comment out the @Disabled line to add this opmode to the Driver Station OpMode list
*/
@Autonomous(name="Blue (Backstage)", group="Robot")
//@Disabled
public class BlueBackStage extends LinearOpMode {
/* Declare OpMode members. */
private DcMotor leftDrive = null;
private DcMotor rightDrive = null;
private DcMotor backrightDrive = null;
private DcMotor backleftDrive = null;
private DistanceSensor distanceRight = null;
private DistanceSensor distanceLeft = null;
private Servo wrist = null;
private Servo gripper = null;
private DcMotor arm = null;
private ElapsedTime runtime = new ElapsedTime();
// Calculate the COUNTS_PER_INCH for your specific drive train.
// Go to your motor vendor website to determine your motor's COUNTS_PER_MOTOR_REV
// For external drive gearing, set DRIVE_GEAR_REDUCTION as needed.
// For example, use a value of 2.0 for a 12-tooth spur gear driving a 24-tooth spur gear.
// This is gearing DOWN for less speed and more torque.
// For gearing UP, use a gear ratio less than 1.0. Note this will affect the direction of wheel rotation.
static final double COUNTS_PER_MOTOR_REV = 537.6; // eg: TETRIX Motor Encoder
static final double DRIVE_GEAR_REDUCTION = 1.0; // No External Gearing.
static final double WHEEL_DIAMETER_INCHES = 3.77953; // For figuring circumference
static final double COUNTS_PER_INCH = (COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCTION) /
(WHEEL_DIAMETER_INCHES * Math.PI);
static final double COUNTS_PER_ARM_INCH = (COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCTION) / (2.7 * Math.PI);
double DRIVE_SPEED = 0.5;
static final double DRIVE_SPEED_SLOW = .25;
static final double TURN_SPEED = 0.4;
static final double LONG_TIMEOUT = 1000;
static final double DEGREE_TOO_DISTANCE = 0.21944444444;
static final double ARM_SPEED = .1;
static final double TICKS_TO_DEGREES = 0.07462686567;
@Override
public void runOpMode() {
hardwareinit();
// Send telemetry message to indicate successful Encoder reset
/* telemetry.addData("Starting at", "%7d :%7d",
leftDrive.getCurrentPosition(),
rightDrive.getCurrentPosition(),
backleftDrive.getCurrentPosition(),
backrightDrive.getCurrentPosition());*/
telemetry.update();
// Wait for the game to start (driver presses PLAY)
waitForStart();
{
executeAuto();
}
// Step through each leg of the path,
// Note: Reverse movement is obtained by setting a negative distance (not speed)
}
//
public void driveForward(double distance) {
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT, false); // S1: Forward 47 Inches with 5 Sec timeout
}
public void driveForwardSpeed(double distance, double speed) {
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
encoderDrive(speed, distance, distance, LONG_TIMEOUT, false); // S1: Forward 47 Inches with 5 Sec timeout
}
public void straightLeft(double distance) {
leftDrive.setDirection(DcMotor.Direction.FORWARD);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.FORWARD);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT, true);
}
public void straightRight(double distance) {
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.REVERSE);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.FORWARD);
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT, true);
}
public void turnRight(double degrees) {
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.REVERSE);
backrightDrive.setDirection(DcMotor.Direction.FORWARD);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
double turning_distance = degrees * DEGREE_TOO_DISTANCE;
encoderDrive(DRIVE_SPEED, turning_distance, turning_distance, LONG_TIMEOUT, false);
}
public void raisearm(int degrees) {
armEncoder(ARM_SPEED, degrees * TICKS_TO_DEGREES, LONG_TIMEOUT);
}
public void hardwareinit() {
leftDrive = hardwareMap.get(DcMotor.class, "Drive front lt");
rightDrive = hardwareMap.get(DcMotor.class, "Drive front rt");
backleftDrive = hardwareMap.get(DcMotor.class, "Drive back lt");
backrightDrive = hardwareMap.get(DcMotor.class, "Drive back rt");
distanceRight = hardwareMap.get(DistanceSensor.class, "color right");
distanceLeft = hardwareMap.get(DistanceSensor.class, "color left");
gripper = hardwareMap.get(Servo.class, "gripper");
arm = hardwareMap.get(DcMotor.class, "arm raise");
wrist = hardwareMap.get(Servo.class, "wrist");
sleep(1000);
// To drive forward, most robots need the motor on one side to be reversed, because the axles point in opposite directions.
// When run, this OpMode should start both motors driving forward. So adjust these two lines based on your first test drive.
// Note: The settings here assume direct drive on left and right wheels. Gear Reduction or 90 Deg drives may require direction flips
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
arm.setDirection(DcMotor.Direction.REVERSE);
leftDrive.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
rightDrive.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
backleftDrive.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
backrightDrive.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
leftDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
rightDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
backleftDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
backrightDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
arm.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
leftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
rightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backrightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backleftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
arm.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
}
public void testWrist() {
wrist.setPosition(0);
sleep(3000);
wrist.setPosition(1);
sleep(3000);
}
public void testGripper() {
gripper.setPosition(0);
sleep(3000);
gripper.setPosition(1);
sleep(3000);
}
public void executeAuto() {
arm.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
driveForward(26);
sleep(500);
int distanceleft = (int) distanceLeft.getDistance(DistanceUnit.INCH);
int distanceright = (int) distanceRight.getDistance(DistanceUnit.INCH);
if (distanceleft < 7) {
telemetry.addData("position", "left");
telemetry.update();
straightLeft(13.5);
raisearm(80);
arm.setPower(0);
driveForward(-15.5);
turnRight(90);
straightRight(15);
driveForward(-18);
DRIVE_SPEED = .25;
straightLeft(22.25);
driveForward(-.30);
raisearm(80);
wrist.setPosition(0);
raisearm(100);
gripper.setPosition(1);
sleep(500);
driveForward(6);
raisearm(-50);
wrist.setPosition(1);
raisearm(-70);
straightLeft(35);
driveForward(-22);
terminateOpModeNow();
}
if (distanceright < 7) {
telemetry.addData("position", "right");
telemetry.update();
turnRight(88);
driveForward(5.25);
raisearm(80);
arm.setPower(0);
driveForward(-38);
straightLeft(7.5);
raisearm(80);
wrist.setPosition(0);
raisearm(100);
gripper.setPosition(1);
driveForward(7.5);
raisearm(-50);
wrist.setPosition(1);
raisearm(-70);
straightLeft(11);
driveForward(-10);
terminateOpModeNow();
} else {
telemetry.addData("position", "center");
telemetry.update();
driveForward(5);
raisearm(80);
arm.setPower(0);
driveForward(-8);
straightLeft(11.5);
driveForward(-15);
turnRight(90);
straightRight(15);
driveForward(-18);
DRIVE_SPEED = .25;
straightLeft(29);
driveForward(-2);
raisearm(80);
wrist.setPosition(0);
raisearm(100);
gripper.setPosition(1);
driveForward(6);
raisearm(-50);
wrist.setPosition(1);
raisearm(-70);
straightLeft(28);
driveForward(-25);
terminateOpModeNow();
}
//Values were created from robot with wheel issues 9/28/23
telemetry.addData("Path", "Complete");
telemetry.update();
sleep(1000); // pause to display final telemetry message.
}
/*
* Method to perform a relative move, based on encoder counts.
* Encoders are not reset as the move is based on the current position.
* Move will stop if any of three conditions occur:
* 1) Move gets to the desired position
* 2) Move runs out of time
* 3) Driver stops the opmode running.
*/
// public void encoderDrive(double speed, double leftInches, double rightInches, double timeout, boolean addJuice) {
//
// if(leftInches < 4) {
// encodedDriver(speed, leftInches, rightInches, timeout, addJuice);
//
// } else {
// // first n-4 is 50% speed (regional tournament speed)
// encodedDriver(DRIVE_SPEED, leftInches-10, rightInches-4, timeout, addJuice);
// // trailing result is 30% speed (base speed)
// encodedDriver(.3, 10, 10, timeout, addJuice);
//
// }
//}
public void encoderDrive(double speed,
double leftInches, double rightInches,
double timeoutS, boolean addJuice) {
int newLeftTarget;
int newRightTarget;
int newBackLeftTarget;
int newbackRightTarget;
if (opModeIsActive()) {
// Determine new target position, and pass to motor controller
newLeftTarget = leftDrive.getCurrentPosition() + (int) (leftInches * COUNTS_PER_INCH);
newRightTarget = rightDrive.getCurrentPosition() + (int) (rightInches * COUNTS_PER_INCH);
newBackLeftTarget = backleftDrive.getCurrentPosition() + (int) (rightInches * COUNTS_PER_INCH);
newbackRightTarget = backrightDrive.getCurrentPosition() + (int) (rightInches * COUNTS_PER_INCH);
leftDrive.setTargetPosition(newLeftTarget);
rightDrive.setTargetPosition(newRightTarget);
backrightDrive.setTargetPosition(newbackRightTarget);
backleftDrive.setTargetPosition(newBackLeftTarget);
// Turn On RUN_TO_POSITION
leftDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
rightDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
backrightDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
backleftDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
// reset the timeout time and start motion.
runtime.reset();
if(addJuice) {
leftDrive.setPower(Math.abs(speed * 1.05));
rightDrive.setPower(Math.abs(speed * 1.05));
} else {
leftDrive.setPower(Math.abs(speed));
rightDrive.setPower(Math.abs(speed));
}
backrightDrive.setPower(Math.abs(speed));
backleftDrive.setPower(Math.abs(speed));
// keep looping while we are still active, and there is time left, and both motors are running.
// Note: We use (isBusy() && isBusy()) in the loop test, which means that when EITHER motor hits
// its target position, the motion will stop. This is "safer" in the event that the robot will
// always end the motion as soon as possible.
// However, if you require that BOTH motors have finished their moves before the robot continues
// onto the next step, use (isBusy() || isBusy()) in the loop test.
while (opModeIsActive() &&
(runtime.seconds() < timeoutS) &&
(leftDrive.isBusy() && rightDrive.isBusy() && backleftDrive.isBusy() && backrightDrive.isBusy() && backrightDrive.isBusy())) {
// Display it for the driver.
telemetry.addData("Running to", " %7d :%7d", newLeftTarget, newRightTarget);
telemetry.addData("Currently at", " at %7d :%7d",
leftDrive.getCurrentPosition(), rightDrive.getCurrentPosition(), backrightDrive.getCurrentPosition(), backleftDrive.getCurrentPosition());
telemetry.update();
}
leftDrive.setPower(0);
rightDrive.setPower(0);
backrightDrive.setPower(0);
backleftDrive.setPower(0);
// Turn off RUN_TO_POSITION
leftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
rightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backleftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backrightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
// sleep(250); // optional pause after each move.
}
}
public void armEncoder(double speed,
double Inches, double timeoutS) {
int newarmTarget;
if (opModeIsActive()) {
// Determine new target position, and pass to motor controller
newarmTarget = arm.getCurrentPosition() + (int) (Inches * COUNTS_PER_ARM_INCH);
arm.setTargetPosition(newarmTarget);
// Turn On RUN_TO_POSITION
arm.setMode(DcMotor.RunMode.RUN_TO_POSITION);
// reset the timeout time and start motion.
runtime.reset();
arm.setPower(Math.abs(speed));
// keep looping while we are still active, and there is time left, and both motors are running.
// Note: We use (isBusy() && isBusy()) in the loop test, which means that when EITHER motor hits
// its target position, the motion will stop. This is "safer" in the event that the robot will
// always end the motion as soon as possible.
// However, if you require that BOTH motors have finished their moves before the robot continues
// onto the next step, use (isBusy() || isBusy()) in the loop test.
while (opModeIsActive() &&
(runtime.seconds() < timeoutS) &&
(arm.isBusy())) {
// Display it for the driver.
telemetry.addData("Running to", " %7d", newarmTarget);
telemetry.addData("Currently at", " at %7d",
arm.getCurrentPosition());
telemetry.update();
}
arm.setPower(0);
// Turn off RUN_TO_POSITION
arm.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
}
}
}

View File

@ -0,0 +1,478 @@
/* Copyright (c) 2017 FIRST. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided that
* the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.firstinspires.ftc.teamcode;
import android.annotation.SuppressLint;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DistanceSensor;
import com.qualcomm.robotcore.hardware.Servo;
import com.qualcomm.robotcore.util.ElapsedTime;
import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;
/**
* This file illustrates the concept of driving a path based on encoder counts.
* The code is structured as a LinearOpMode
*
* The code REQUIRES that you DO have encoders on the wheels,
* otherwise you would use: RobotAutoDriveByTime;
*
* This code ALSO requires that the drive Motors have been configured such that a positive
* power command moves them forward, and causes the encoders to count UP.
*
* The desired path in this example is:
* - Drive forward for 48 inches
* - Spin right for 12 Inches
* - Drive Backward for 24 inches
* - Stop and close the claw.
*
* The code is written using a method called: encoderDrive(speed, leftInches, rightInches, timeoutS)
* that performs the actual movement.
* This method assumes that each movement is relative to the last stopping place.
* There are other ways to perform encoder based moves, but this method is probably the simplest.
* This code uses the RUN_TO_POSITION mode to enable the Motor controllers to generate the run profile
*
* Use Android Studio to Copy this Class, and Paste it into your team's code folder with a new name.
* Remove or comment out the @Disabled line to add this opmode to the Driver Station OpMode list
*/
@Autonomous(name="Blue (Backstage) Clone", group="Robot")
//@Disabled
public class BlueBackStageClone extends LinearOpMode {
/* Declare OpMode members. */
private DcMotor leftDrive = null;
private DcMotor rightDrive = null;
private DcMotor backrightDrive = null;
private DcMotor backleftDrive = null;
private DistanceSensor distanceRight = null;
private DistanceSensor distanceLeft = null;
private Servo wrist = null;
private Servo gripper = null;
private DcMotor arm = null;
private DistanceSensor distance = null;
private ElapsedTime runtime = new ElapsedTime();
// Calculate the COUNTS_PER_INCH for your specific drive train.
// Go to your motor vendor website to determine your motor's COUNTS_PER_MOTOR_REV
// For external drive gearing, set DRIVE_GEAR_REDUCTION as needed.
// For example, use a value of 2.0 for a 12-tooth spur gear driving a 24-tooth spur gear.
// This is gearing DOWN for less speed and more torque.
// For gearing UP, use a gear ratio less than 1.0. Note this will affect the direction of wheel rotation.
static final double COUNTS_PER_MOTOR_REV = 537.6; // eg: TETRIX Motor Encoder
static final double DRIVE_GEAR_REDUCTION = 1.0; // No External Gearing.
static final double WHEEL_DIAMETER_INCHES = 3.77953; // For figuring circumference
static final double COUNTS_PER_INCH = (COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCTION) /
(WHEEL_DIAMETER_INCHES * Math.PI);
static final double COUNTS_PER_ARM_INCH = (COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCTION) / (2.7 * Math.PI);
static final double DRIVE_SPEED = 0.3;
static final double TURN_SPEED = 0.4;
static final double LONG_TIMEOUT = 1000;
static final double DEGREE_TOO_DISTANCE = 0.21944444444;
static final double ARM_SPEED = .1;
static final double TICKS_TO_DEGREES = 0.07462686567;
@Override
public void runOpMode()
{
hardwareinit();
// Send telemetry message to indicate successful Encoder reset
/* telemetry.addData("Starting at", "%7d :%7d",
leftDrive.getCurrentPosition(),
rightDrive.getCurrentPosition(),
backleftDrive.getCurrentPosition(),
backrightDrive.getCurrentPosition());*/
telemetry.update();
// Wait for the game to start (driver presses PLAY)
waitForStart();
{
executeAuto();
}
// Step through each leg of the path,
// Note: Reverse movement is obtained by setting a negative distance (not speed)
}
//
public void driveForward(double distance)
{
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT); // S1: Forward 47 Inches with 5 Sec timeout
}
public void straightLeft(double distance)
{
leftDrive.setDirection(DcMotor.Direction.FORWARD);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.FORWARD);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT);
}
public void straightRight(double distance)
{
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.REVERSE);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.FORWARD);
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT);
}
public void turnLeft(double degrees)
{
leftDrive.setDirection(DcMotor.Direction.FORWARD);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.FORWARD);
double turning_distance = degrees * DEGREE_TOO_DISTANCE;
encoderDrive(DRIVE_SPEED, turning_distance, turning_distance, LONG_TIMEOUT);
}
public void turnRight(double degrees) {
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.REVERSE);
backrightDrive.setDirection(DcMotor.Direction.FORWARD);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
double turning_distance = degrees * DEGREE_TOO_DISTANCE;
encoderDrive(DRIVE_SPEED, turning_distance, turning_distance, LONG_TIMEOUT);
}
public void raisearm(int degrees) {
armEncoder(ARM_SPEED, degrees*TICKS_TO_DEGREES, LONG_TIMEOUT);
}
public void hardwareinit()
{
leftDrive = hardwareMap.get(DcMotor.class, "Drive front lt");
rightDrive = hardwareMap.get(DcMotor.class, "Drive front rt");
backleftDrive = hardwareMap.get(DcMotor.class, "Drive back lt");
backrightDrive = hardwareMap.get(DcMotor.class, "Drive back rt");
distanceRight = hardwareMap.get(DistanceSensor.class, "color right");
distanceLeft = hardwareMap.get(DistanceSensor.class, "color left");
gripper = hardwareMap.get(Servo.class, "gripper");
arm = hardwareMap.get(DcMotor.class, "arm raise");
wrist = hardwareMap.get(Servo.class, "wrist");
distance = hardwareMap.get(DistanceSensor.class, "distance");
sleep(1000);
// To drive forward, most robots need the motor on one side to be reversed, because the axles point in opposite directions.
// When run, this OpMode should start both motors driving forward. So adjust these two lines based on your first test drive.
// Note: The settings here assume direct drive on left and right wheels. Gear Reduction or 90 Deg drives may require direction flips
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
arm.setDirection(DcMotor.Direction.REVERSE);
leftDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
rightDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
backleftDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
backrightDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
arm.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
leftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
rightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backrightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backleftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
arm.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
}
public void testWrist()
{
wrist.setPosition(0);
sleep(3000);
wrist.setPosition(1);
sleep(3000);
}
public void testGripper()
{
gripper.setPosition(0.5);
}
@SuppressLint("SuspiciousIndentation")
public void executeAuto()
{
arm.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
driveForward(26);
sleep(500);
int distanceleft = (int)distanceLeft.getDistance(DistanceUnit.INCH);
int distanceright = (int)distanceRight.getDistance(DistanceUnit.INCH);
telemetry.addData("color left sensor",distanceleft);
telemetry.addData("color right sensor",distanceright);
telemetry.update();
if (distanceleft < 7)
{
telemetry.addData("postion","left");
telemetry.update();
turnLeft(90);
straightLeft(2);
driveForward(5.5);
raisearm(80);
arm.setPower(0);
driveForward(-21);
straightLeft(34);
driveForward(-10);
straightRight(35);
driveForward(-5);
raisearm(80);
wrist.setPosition(0);
raisearm(100);
gripper.setPosition(1);
sleep(500);
driveForward(4.5);
raisearm(-50);
wrist.setPosition(1);
raisearm(-70);
/* need to review */
straightLeft(11);
driveForward(1.5);
terminateOpModeNow();
}
if (distanceright < 7)
{
telemetry.addData("postion", "right");
telemetry.update();
straightRight(12);
raisearm(80);
arm.setPower(0);
driveForward(-15.5);
turnLeft(90);
straightLeft(15);
driveForward(-20.5);
straightRight(19);
driveForward(-1.5);
raisearm(80);
wrist.setPosition(0);
raisearm(100);
gripper.setPosition(1);
driveForward(8.5);
raisearm(-50);
wrist.setPosition(1);
raisearm(-70);
/* need to review */
straightLeft(29);
driveForward(-10);
terminateOpModeNow();
}
else
telemetry.addData("postion","center");
telemetry.update();
driveForward(3.5);
raisearm(80);
arm.setPower(0);
driveForward(-8);
straightRight(11.5);
driveForward(-15);
turnLeft(90);
straightLeft(15);
driveForward(-18);
straightRight(29);
turnRight(10);
raisearm(80);
wrist.setPosition(0);
raisearm(100);
gripper.setPosition(1);
driveForward(5);
/* added from bluebackstage */
raisearm(-50);
wrist.setPosition(1);
raisearm(-70);
straightLeft(19);
driveForward(-10);
terminateOpModeNow();
//Values were created from robot with wheel issues 9/28/23
telemetry.addData("Path", "Complete");
telemetry.update();
// sleep(1000); // pause to display final telemetry message.
}
/*
* Method to perform a relative move, based on encoder counts.
* Encoders are not reset as the move is based on the current position.
* Move will stop if any of three conditions occur:
* 1) Move gets to the desired position
* 2) Move runs out of time
* 3) Driver stops the opmode running.
*/
public void encoderDrive(double speed,
double leftInches, double rightInches,
double timeoutS) {
int newLeftTarget;
int newRightTarget;
int newBackLeftTarget;
int newbackRightTarget;
if (opModeIsActive()) {
// Determine new target position, and pass to motor controller
newLeftTarget = leftDrive.getCurrentPosition() + (int) (leftInches * COUNTS_PER_INCH);
newRightTarget = rightDrive.getCurrentPosition() + (int) (rightInches * COUNTS_PER_INCH);
newBackLeftTarget = backleftDrive.getCurrentPosition() + (int) (leftInches * COUNTS_PER_INCH);
newbackRightTarget = backrightDrive.getCurrentPosition() + (int) (rightInches * COUNTS_PER_INCH);
leftDrive.setTargetPosition(newLeftTarget);
rightDrive.setTargetPosition(newRightTarget);
backrightDrive.setTargetPosition(newbackRightTarget);
backleftDrive.setTargetPosition(newBackLeftTarget);
// Turn On RUN_TO_POSITION
leftDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
rightDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
backrightDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
backleftDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
// reset the timeout time and start motion.
runtime.reset();
leftDrive.setPower(Math.abs(speed));
rightDrive.setPower(Math.abs(speed));
backrightDrive.setPower(Math.abs(speed));
backleftDrive.setPower(Math.abs(speed));
// keep looping while we are still active, and there is time left, and both motors are running.
// Note: We use (isBusy() && isBusy()) in the loop test, which means that when EITHER motor hits
// its target position, the motion will stop. This is "safer" in the event that the robot will
// always end the motion as soon as possible.
// However, if you require that BOTH motors have finished their moves before the robot continues
// onto the next step, use (isBusy() || isBusy()) in the loop test.
while (opModeIsActive() &&
(runtime.seconds() < timeoutS) &&
(leftDrive.isBusy() && rightDrive.isBusy() && backleftDrive.isBusy() && backrightDrive.isBusy() && backrightDrive.isBusy())) {
// Display it for the driver.
telemetry.addData("Running to", " %7d :%7d", newLeftTarget, newRightTarget);
telemetry.addData("Currently at", " at %7d :%7d",
leftDrive.getCurrentPosition(), rightDrive.getCurrentPosition(), backrightDrive.getCurrentPosition(), backleftDrive.getCurrentPosition());
telemetry.update();
}
leftDrive.setPower(0);
rightDrive.setPower(0);
backrightDrive.setPower(0);
backleftDrive.setPower(0);
// Turn off RUN_TO_POSITION
leftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
rightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backleftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backrightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
sleep(250); // optional pause after each move.
}
}
public void armEncoder(double speed,
double Inches, double timeoutS) {
int newarmTarget;
if (opModeIsActive()) {
// Determine new target position, and pass to motor controller
newarmTarget = arm.getCurrentPosition() + (int) (Inches * COUNTS_PER_ARM_INCH);
arm.setTargetPosition(newarmTarget);
// Turn On RUN_TO_POSITION
arm.setMode(DcMotor.RunMode.RUN_TO_POSITION);
// reset the timeout time and start motion.
runtime.reset();
arm.setPower(Math.abs(speed));
// keep looping while we are still active, and there is time left, and both motors are running.
// Note: We use (isBusy() && isBusy()) in the loop test, which means that when EITHER motor hits
// its target position, the motion will stop. This is "safer" in the event that the robot will
// always end the motion as soon as possible.
// However, if you require that BOTH motors have finished their moves before the robot continues
// onto the next step, use (isBusy() || isBusy()) in the loop test.
while (opModeIsActive() &&
(runtime.seconds() < timeoutS) &&
(arm.isBusy())) {
// Display it for the driver.
telemetry.addData("Running to", " %7d", newarmTarget);
telemetry.addData("Currently at", " at %7d",
arm.getCurrentPosition());
telemetry.update();
}
arm.setPower(0);
// Turn off RUN_TO_POSITION
arm.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
}
}
}

View File

@ -92,34 +92,34 @@ public class ChassisControl extends OpMode {
* User defined loop method.
* This method will be called repeatedly in a loop while this op mode is running
*/
double num = 1;
String speed = "";
double num = 3;
String speed = "slow";
public void loop() {
frontLeft.setDirection(DcMotor.Direction.REVERSE);
backLeft.setDirection(DcMotor.Direction.REVERSE);
frontRight.setDirection(DcMotor.Direction.FORWARD);
backRight.setDirection(DcMotor.Direction.REVERSE);
if(gamepad1.a){
num = 3;
speed = "slow";
}
if(gamepad1.b){
num = 2.5;
speed = "medium";
}
if(gamepad1.y){
num = 2;
speed = "fast";
}
if(gamepad1.x){
num = 1.5;
speed = "Ludicrous";
}
if(gamepad1.x && gamepad1.y){
num = 1;
speed = "plaid";
}
// if(gamepad1.a){
// num = 3;
// speed = "slow";
// }
//// if(gamepad1.b){
//// num = 2.5;
//// speed = "medium";
//// }
//// if(gamepad1.y){
//// num = 2;
//// speed = "fast";
//// }
//// if(gamepad1.x){
//// num = 1.5;
//// speed = "Ludicrous";
//// }
//// if(gamepad1.x && gamepad1.y){
//// num = 1;
//// speed = "plaid";
//// }
axial = -gamepad1.left_stick_y/num; // Note: pushing stick forward gives negative value
lateral = gamepad1.left_stick_x/num;
yaw = gamepad1.right_stick_x/(num+0.5);

View File

@ -0,0 +1,283 @@
package org.firstinspires.ftc.teamcode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DcMotorSimple;
import com.qualcomm.robotcore.hardware.Gamepad;
import com.qualcomm.robotcore.hardware.Servo;
import com.qualcomm.robotcore.util.ElapsedTime;
@TeleOp( name = "fullRobotControl")
public class FullRobotControl extends OpMode {
public double axial;
public double lateral;
public double yaw;
DcMotor frontRight;
DcMotor backRight;
DcMotor frontLeft;
DcMotor backLeft;
//DcMotor armMotor;
Servo gripper;
Servo wrist;
DcMotor arm;
DcMotor hang;
DcMotor armThroughBoreEncoder;
public ElapsedTime runtime = new ElapsedTime();
static final double TICKS_TO_DEGREES = 0.07462686567;
static final double COUNTS_PER_MOTOR_REV = 537.6;
static final double DRIVE_GEAR_REDUCTION = 1.0;
static final double COUNTS_PER_ARM_INCH = (COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCTION) / (2.7 * Math.PI);
/**
* this function takes a long milliseconds parameter and sleeps
* @param millis milliseconds to sleep
*/
public void sleepmillis(long millis) {
try {
Thread.sleep(millis);
} catch (Exception e) {
}
}
/**
* stops all drive motors
*/
public void off() {
frontRight.setPower(0);
backRight.setPower(0);
frontLeft.setPower(0);
backLeft.setPower(0);
}
/**
* User defined init method
* This method will be called once when the INIT button is pressed.
*/
public void init() {
telemetry.addData("Status","In Init()");
telemetry.update();
frontRight = hardwareMap.dcMotor.get("Drive front rt");
backRight = hardwareMap.dcMotor.get("Drive back rt");
frontLeft = hardwareMap.dcMotor.get("Drive front lt");
backLeft = hardwareMap.dcMotor.get("Drive back lt");
//armMotor = hardwareMap.dcMotor.get("armMotor");
gripper = hardwareMap.servo.get("gripper");
gripper.setPosition(1);
wrist = hardwareMap.servo.get("wrist");
arm = hardwareMap.dcMotor.get("arm raise");
armThroughBoreEncoder = hardwareMap.dcMotor.get("arm raise");
hang = hardwareMap.dcMotor.get("hang");
wrist.setPosition(1);
}
/**
* User defined init_loop method
* This method will be called repeatedly when the INIT button is pressed.
* This method is optional. By default this method takes no action.
*/
public void init_loop(){
// Wait for the game to start (driver presses PLAY)
telemetry.addData("Status", "Initialized");
telemetry.update();
}
/**
* User defined start method.
* This method will be called once when the PLAY button is first pressed.
* This method is optional. By default this method takes not action. Example usage: Starting another thread.
*/
public void start() {
}
/**
* User defined stop method
* This method will be called when this op mode is first disabled.
* The stop method is optional. By default this method takes no action.
*/
public void stop(){
}
/**
* User defined loop method.
* This method will be called repeatedly in a loop while this op mode is running
*/
double num = 2;
String speed = "medium";
public void loop() {
frontLeft.setDirection(DcMotor.Direction.REVERSE);
backLeft.setDirection(DcMotor.Direction.REVERSE);
frontRight.setDirection(DcMotor.Direction.FORWARD);
backRight.setDirection(DcMotor.Direction.REVERSE);
if(gamepad1.a){
num = 2.5;
speed = "medium";
}
if(gamepad1.b){
num = 2;
speed = "fast";
}
if(gamepad1.x){
num = 1.75;
speed = "Ludicrous";
}
if(gamepad1.y ){
num = 1.5;
speed = "plaid";
}
axial = -gamepad1.left_stick_y/num; // Note: pushing stick forward gives negative value
lateral = gamepad1.left_stick_x/num;
yaw = gamepad1.right_stick_x/(num+0.5);
// Combine the joystick requests for each axis-motion to determine each wheel's power.
// Set up a variable for each drive wheel to save the power level for telemetry.
double leftFrontPower = axial + lateral + yaw;
double rightFrontPower = axial - lateral - yaw;
double leftBackPower = axial - lateral + yaw;
double rightBackPower = axial + lateral - yaw;
double armPower = gamepad1.right_stick_y/3;
// Normalize the values so no wheel power exceeds 100%
// This ensures that the robot maintains the desired motion.
double max = Math.max(Math.abs(leftFrontPower), Math.abs(rightFrontPower));
max = Math.max(max, Math.abs(leftBackPower));
max = Math.max(max, Math.abs(rightBackPower));
if (max > 1.0) {
leftFrontPower /= max;
rightFrontPower /= max;
leftBackPower /= max;
rightBackPower /= max;
}
if(gamepad2.dpad_down){
wrist.setPosition(1);
}
if(gamepad2.dpad_up){
wrist.setPosition(0.5);
}
if(gamepad2.left_trigger > 0.35)
{
gripper.setPosition(0.25);
}
if(gamepad2.right_trigger > 0.35){
gripper.setPosition(1);
}
// int armState = 0;
// int armPos = 0;
// if(gamepad2.x)
// {
// armState = 1;
// raisearm(0 - armPos);
// armPos = 0;
// }
// if(gamepad2.y)
// {
// armState = 2;
// raisearm(1000);
// armPos = 30;
// }
// if(gamepad2.b)
// {
// armState = 2;
// raisearm(200 - armPos);
// armPos = 200;
// }
// if(gamepad2.right_bumper)
// {
// armState =+ 1;
// }
// if(gamepad2.left_bumper)
// {
// armState =- 1;
// }
// if(armState == 1)
// {
// raisearm(0 - armPos);
// armPos = 0;
// }
// if(armState == 2)
// {
// raisearm(30 - armPos);
// armPos = 30;
// }
// if(armState == 3)
// {
// raisearm(200 - armPos);
// armPos = 200;
//
// }
if(gamepad2.right_stick_y > 0)
{
arm.setPower(armPower);
}
if(gamepad2.left_stick_y < 0)
{
arm.setPower(armPower);
}
telemetry.addData("arm is at", " %7d", armThroughBoreEncoder.getCurrentPosition());
telemetry.update();
frontLeft.setPower(leftFrontPower);
frontRight.setPower(rightFrontPower);
backLeft.setPower(leftBackPower);
backRight.setPower(rightBackPower);
//arm.setPower(armPower);
// Show the elapsed game time and wheel power
// telemetry.addData("Status", "Run Time: " + runtime.toString());
// telemetry.addData("Front left, Right", "%4.2f, %4.2f", leftFrontPower, rightFrontPower);
// telemetry.addData("Back left, Right", "%4.2f, %4.2f", leftBackPower, rightBackPower);
// telemetry.addData("Speed", speed);
telemetry.update();
}
public void raisearm(int degrees)
{
arm.setDirection(DcMotor.Direction.REVERSE);
armDriveWithEncoder(.2, degrees*TICKS_TO_DEGREES);
}
public void armDriveWithEncoder(double speed,
double Inches) {
int newarmTarget;
// Determine new target position, and pass to motor controller
newarmTarget = armThroughBoreEncoder.getCurrentPosition() + (int) (Inches * COUNTS_PER_ARM_INCH);
armThroughBoreEncoder.setTargetPosition(newarmTarget);
// Turn On RUN_TO_POSITION
arm.setMode(DcMotor.RunMode.RUN_TO_POSITION);
// reset the timeout time and start motion.
runtime.reset();
arm.setPower(Math.abs(speed));
arm.setPower(0);
// Turn off RUN_TO_POSITION
armThroughBoreEncoder.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
}
}

View File

@ -1,51 +0,0 @@
package org.firstinspires.ftc.teamcode;
import static org.firstinspires.ftc.robotcore.external.BlocksOpModeCompanion.hardwareMap;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.hardware.DcMotor;
import java.util.concurrent.TimeUnit;
@Autonomous(name="Motor_test")
public class Motor_Test extends OpMode {
DcMotor hwMotorDriveFrontLeft;
DcMotor hwMotorDriveFrontRight;
DcMotor hwMotorDriveBackLeft;
DcMotor hwMotorDriveBackRight;
public void init() {
hwMotorDriveFrontLeft = hardwareMap.dcMotor.get("Drive front lt");
hwMotorDriveFrontRight = hardwareMap.dcMotor.get("Drive front rt");
hwMotorDriveBackLeft = hardwareMap.dcMotor.get("Drive back lt");
hwMotorDriveBackRight = hardwareMap.dcMotor.get("Drive back rt");
}
public void sleepSec(int iSecs){
try {
Thread.sleep(iSecs*1000);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
public void loop() {
hwMotorDriveFrontLeft.setPower(1);
sleepSec(1);
hwMotorDriveFrontRight.setPower(1);
sleepSec(1);
hwMotorDriveBackLeft.setPower(1);
sleepSec(1);
hwMotorDriveBackRight.setPower(1);
sleepSec(1);
hwMotorDriveFrontLeft.setPower(0);
hwMotorDriveFrontRight.setPower(0);
hwMotorDriveBackLeft.setPower(0);
hwMotorDriveBackRight.setPower(0);
sleepSec(10);
}
}

View File

@ -0,0 +1,81 @@
package org.firstinspires.ftc.teamcode;
import static java.lang.Math.round;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.hardware.AnalogSensor;
import com.qualcomm.robotcore.hardware.ColorSensor;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DcMotorSimple;
import com.qualcomm.robotcore.hardware.DistanceSensor;
import com.qualcomm.robotcore.hardware.TouchSensor;
import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;
@Autonomous(name="Name")
public class Name extends LinearOpMode {
private DcMotor rightHandWheel;
private DcMotor rightLegWheel;
private DcMotor leftHandWheel;
private DcMotor leftLegWheel;
private TouchSensor iFeelYou;
private DistanceSensor whereAreYou;
private ;
@Override
public void runOpMode() throws InterruptedException {
rightHandWheel = hardwareMap.get(DcMotor.class,"right hand wheel");
rightLegWheel = hardwareMap.get(DcMotor.class,"right leg wheel");
leftHandWheel = hardwareMap.get(DcMotor.class, "left hand wheel");
leftLegWheel = hardwareMap.get(DcMotor.class, "left leg wheel");
iFeelYou = hardwareMap.get(TouchSensor.class, "i feel you");
whereAreYou = hardwareMap.get(DistanceSensor.class , "where are you");
rightHandWheel.setDirection(DcMotor.Direction.REVERSE);
rightLegWheel.setDirection(DcMotor.Direction.FORWARD);
leftHandWheel.setDirection(DcMotorSimple.Direction.FORWARD);
leftLegWheel.setDirection(DcMotorSimple.Direction.REVERSE);
// Wait for the game to start (driver presses PLAY)
waitForStart();
while(opModeIsActive()){
/* telemetry.speak( "Oh see, you see" +
"By the dusk's late light" +
"What so proudly we rained" +
"At the twilight's last gleaming?" +
"Whose broad stripes and dark stars" +
"Through the perilous fight" +
"Under the ramparts we watched" +
"Were so gallantly, no, streaming?" +
"And the rockets' red glare" +
"The bombs contracting in air" +
"Gave proof through the night" +
"That our flag was not there" +
"O say, that star-spangled banner doesn't wave" +
"Over the land of the enslaved and the home of the cowardly");*/
rightHandWheel.setPower(0.2);
rightLegWheel.setPower(0.2);
leftLegWheel.setPower(0.2);
leftHandWheel.setPower(0.2);
if(iFeelYou.isPressed()) {
telemetry.speak("Ouchie that hurt me and my feelings");
telemetry.addData("was i triggered", iFeelYou.isPressed());
}
double nicerValue = whereAreYou.getDistance(DistanceUnit.INCH);
telemetry.addData("you are this far (in inches) --> ", "%.2f", nicerValue);
telemetry.update();
}
}
}

View File

@ -0,0 +1,510 @@
/* Copyright (c) 2017 FIRST. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided that
* the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.firstinspires.ftc.teamcode;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.hardware.ColorSensor;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DcMotorSimple;
import com.qualcomm.robotcore.hardware.DistanceSensor;
import com.qualcomm.robotcore.hardware.Servo;
import com.qualcomm.robotcore.util.ElapsedTime;
import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;
/**
* This file illustrates the concept of driving a path based on encoder counts.
* The code is structured as a LinearOpMode
*
* The code REQUIRES that you DO have encoders on the wheels,
* otherwise you would use: RobotAutoDriveByTime;
*
* This code ALSO requires that the drive Motors have been configured such that a positive
* power command moves them forward, and causes the encoders to count UP.
*
* The desired path in this example is:
* - Drive forward for 48 inches
* - Spin right for 12 Inches
* - Drive Backward for 24 inches
* - Stop and close the claw.
*
* The code is written using a method called: encoderDrive(speed, leftInches, rightInches, timeoutS)
* that performs the actual movement.
* This method assumes that each movement is relative to the last stopping place.
* There are other ways to perform encoder based moves, but this method is probably the simplest.
* This code uses the RUN_TO_POSITION mode to enable the Motor controllers to generate the run profile
*
* Use Android Studio to Copy this Class, and Paste it into your team's code folder with a new name.
* Remove or comment out the @Disabled line to add this opmode to the Driver Station OpMode list
*/
@Autonomous(name="Red", group="Robot")
//@Disabled
public class Red extends LinearOpMode {
/* Declare OpMode members. */
private DcMotor leftDrive = null;
private DcMotor rightDrive = null;
private DcMotor backrightDrive = null;
private DcMotor backleftDrive = null;
private DistanceSensor distanceRight = null;
private DistanceSensor distanceLeft = null;
private Servo wrist = null;
private Servo gripper = null;
private DcMotor arm = null;
private ElapsedTime runtime = new ElapsedTime();
// Calculate the COUNTS_PER_INCH for your specific drive train.
// Go to your motor vendor website to determine your motor's COUNTS_PER_MOTOR_REV
// For external drive gearing, set DRIVE_GEAR_REDUCTION as needed.
// For example, use a value of 2.0 for a 12-tooth spur gear driving a 24-tooth spur gear.
// This is gearing DOWN for less speed and more torque.
// For gearing UP, use a gear ratio less than 1.0. Note this will affect the direction of wheel rotation.
static final double COUNTS_PER_MOTOR_REV = 537.6; // eg: TETRIX Motor Encoder
static final double DRIVE_GEAR_REDUCTION = 1.0; // No External Gearing.
static final double WHEEL_DIAMETER_INCHES = 3.77953; // For figuring circumference
static final double COUNTS_PER_INCH = (COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCTION) /
(WHEEL_DIAMETER_INCHES * Math.PI);
static final double COUNTS_PER_ARM_INCH = (COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCTION) / (2.7 * Math.PI);
static final double DRIVE_SPEED = 0.3;
static final double DRIVE_SPEED_SLOW = 0.25;
static final double TURN_SPEED = 0.4;
static final double LONG_TIMEOUT = 1000;
static final double DEGREE_TOO_DISTANCE = 0.21944444444;
static final double ARM_SPEED = .1;
static final double TICKS_TO_DEGREES = 0.07462686567;
@Override
public void runOpMode()
{
hardwareinit();
// Send telemetry message to indicate successful Encoder reset
/* telemetry.addData("Starting at", "%7d :%7d",
leftDrive.getCurrentPosition(),
rightDrive.getCurrentPosition(),
backleftDrive.getCurrentPosition(),
backrightDrive.getCurrentPosition());*/
telemetry.update();
// Wait for the game to start (driver presses PLAY)
waitForStart();
{
executeAuto();
}
// Step through each leg of the path,
// Note: Reverse movement is obtained by setting a negative distance (not speed)
}
//
public void driveForward(double distance)
{
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT); // S1: Forward 47 Inches with 5 Sec timeout
}
public void straightLeft(double distance)
{
leftDrive.setDirection(DcMotor.Direction.FORWARD);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.FORWARD);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT);
}
public void straightRight(double distance)
{
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.REVERSE);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.FORWARD);
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT);
}
public void turnLeft(double degrees)
{
leftDrive.setDirection(DcMotor.Direction.FORWARD);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.FORWARD);
double turning_distance = degrees * DEGREE_TOO_DISTANCE;
encoderDrive(DRIVE_SPEED, turning_distance, turning_distance, LONG_TIMEOUT);
}
public void turnRight(double degrees) {
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.REVERSE);
backrightDrive.setDirection(DcMotor.Direction.FORWARD);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
double turning_distance = degrees * DEGREE_TOO_DISTANCE;
encoderDrive(DRIVE_SPEED, turning_distance, turning_distance, LONG_TIMEOUT);
}
public void raisearm(int degrees) {
armEncoder(ARM_SPEED, degrees*TICKS_TO_DEGREES, LONG_TIMEOUT);
}
public void hardwareinit()
{
leftDrive = hardwareMap.get(DcMotor.class, "Drive front lt");
rightDrive = hardwareMap.get(DcMotor.class, "Drive front rt");
backleftDrive = hardwareMap.get(DcMotor.class, "Drive back lt");
backrightDrive = hardwareMap.get(DcMotor.class, "Drive back rt");
distanceRight = hardwareMap.get(DistanceSensor.class, "color right");
distanceLeft = hardwareMap.get(DistanceSensor.class, "color left");
gripper = hardwareMap.get(Servo.class, "gripper");
arm = hardwareMap.get(DcMotor.class, "arm raise");
wrist = hardwareMap.get(Servo.class, "wrist");
sleep(1000);
// To drive forward, most robots need the motor on one side to be reversed, because the axles point in opposite directions.
// When run, this OpMode should start both motors driving forward. So adjust these two lines based on your first test drive.
// Note: The settings here assume direct drive on left and right wheels. Gear Reduction or 90 Deg drives may require direction flips
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
arm.setDirection(DcMotor.Direction.REVERSE);
leftDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
rightDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
backleftDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
backrightDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
arm.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
leftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
rightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backrightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backleftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
arm.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
}
public void straightRightOnPower(double speed) {
speed *= -1;
leftDrive.setDirection(DcMotor.Direction.FORWARD);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.FORWARD);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
leftDrive.setPower(speed * 1.05);
rightDrive.setPower(speed * 1.05);
backrightDrive.setPower(speed);
backleftDrive.setPower(speed);
}
public void straighten(Double distance)
{
driveForward(0);
double D1 = distanceRight.getDistance(DistanceUnit.INCH);
driveForward(distance);
double D2 = distanceRight.getDistance(DistanceUnit.INCH);
double rad = Math.atan2(D1 - D2, distance);
double degrees = Math.toDegrees(rad);
turnRight(-degrees);
telemetry.addData("d1", D1);
telemetry.addData("d2", D2);
telemetry.addData("Calibration deg", degrees);
telemetry.update();
sleep(3000);
}
public void centerRight()
{
double rightDistance = distanceRight.getDistance(DistanceUnit.INCH);
straightRight(rightDistance - 3);
telemetry.addData("rightDistance",rightDistance);
telemetry.addData("moving left x inches",rightDistance - 3);
telemetry.update();
straightRight(0.0);
sleep(3000);
}
public void testWrist()
{
wrist.setPosition(0);
sleep(3000);
wrist.setPosition(1);
sleep(3000);
}
public void testGripper()
{
gripper.setPosition(0);
sleep(3000);
gripper.setPosition(1);
sleep(3000);
}
public void executeAuto()
{
// while (true)
// {
// int distanceright = (int)distanceRight.getDistance(DistanceUnit.INCH);
// telemetry.addData("right", distanceright);
// telemetry.update();
// sleep(500);
// }
arm.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
driveForward(26);
sleep(500);
int distanceleft = (int)distanceLeft.getDistance(DistanceUnit.INCH);
int distanceright = (int)distanceRight.getDistance(DistanceUnit.INCH);
if (distanceleft < 7)
{
telemetry.addData("position", "left");
telemetry.update();
straightLeft(12);
raisearm(80);
arm.setPower(0);
sleep(500);
turnRight(90);
driveForward(-10);
do {
straightRightOnPower(DRIVE_SPEED_SLOW);
distanceright = (int) distanceRight.getDistance(DistanceUnit.INCH);
} while (distanceright >= 4);
straighten(12.0);
centerRight();
driveForward(88);
sleep(1000);
wrist.setPosition(.465);
gripper.setPosition(1);
sleep(1000);
driveForward(-3);
terminateOpModeNow();
}
if (distanceright < 7) //right
{
telemetry.addData("position","right");
telemetry.update();
turnRight(90);
straightLeft(2);
driveForward(6.5);
raisearm(45);
arm.setPower(0);
sleep(500);
driveForward(-6);
do {
straightRightOnPower(DRIVE_SPEED_SLOW);
distanceright = (int) distanceRight.getDistance(DistanceUnit.INCH);
} while (distanceright >= 6);
straighten(12.0);
centerRight();
driveForward(88);
sleep(1000);
wrist.setPosition(.465);
gripper.setPosition(1);
sleep(1000);
driveForward(-3);
terminateOpModeNow();
}
else
telemetry.addData("position","center");
telemetry.update();
driveForward(3.5);
raisearm(80);
arm.setPower(0);
driveForward(-8);
turnRight(90);
driveForward(-12);
do {
straightRightOnPower(DRIVE_SPEED_SLOW);
distanceright = (int) distanceRight.getDistance(DistanceUnit.INCH);
} while (distanceright >= 6);
straighten(12.0);
centerRight();
//straightLeft(3);
driveForward(88);
sleep(1000);
wrist.setPosition(.465);
gripper.setPosition(1);
sleep(1000);
driveForward(-3);
terminateOpModeNow();
//Values were created from robot with wheel issues 9/28/23
telemetry.addData("Path", "Complete");
telemetry.update();
sleep(1000); // pause to display final telemetry message.
}
/*
* Method to perform a relative move, based on encoder counts.
* Encoders are not reset as the move is based on the current position.
* Move will stop if any of three conditions occur:
* 1) Move gets to the desired position
* 2) Move runs out of time
* 3) Driver stops the opmode running.
*/
public void encoderDrive(double speed,
double leftInches, double rightInches,
double timeoutS) {
int newLeftTarget;
int newRightTarget;
int newBackLeftTarget;
int newbackRightTarget;
if (opModeIsActive()) {
// Determine new target position, and pass to motor controller
newLeftTarget = leftDrive.getCurrentPosition() + (int) (leftInches * COUNTS_PER_INCH);
newRightTarget = rightDrive.getCurrentPosition() + (int) (rightInches * COUNTS_PER_INCH);
newBackLeftTarget = backleftDrive.getCurrentPosition() + (int) (rightInches * COUNTS_PER_INCH);
newbackRightTarget = backrightDrive.getCurrentPosition() + (int) (rightInches * COUNTS_PER_INCH);
leftDrive.setTargetPosition(newLeftTarget);
rightDrive.setTargetPosition(newRightTarget);
backrightDrive.setTargetPosition(newbackRightTarget);
backleftDrive.setTargetPosition(newBackLeftTarget);
// Turn On RUN_TO_POSITION
leftDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
rightDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
backrightDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
backleftDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
// reset the timeout time and start motion.
runtime.reset();
leftDrive.setPower(Math.abs(speed));
rightDrive.setPower(Math.abs(speed));
backrightDrive.setPower(Math.abs(speed));
backleftDrive.setPower(Math.abs(speed));
// keep looping while we are still active, and there is time left, and both motors are running.
// Note: We use (isBusy() && isBusy()) in the loop test, which means that when EITHER motor hits
// its target position, the motion will stop. This is "safer" in the event that the robot will
// always end the motion as soon as possible.
// However, if you require that BOTH motors have finished their moves before the robot continues
// onto the next step, use (isBusy() || isBusy()) in the loop test.
while (opModeIsActive() &&
(runtime.seconds() < timeoutS) &&
(leftDrive.isBusy() && rightDrive.isBusy() && backleftDrive.isBusy() && backrightDrive.isBusy() && backrightDrive.isBusy())) {
// Display it for the driver.
telemetry.addData("Running to", " %7d :%7d", newLeftTarget, newRightTarget);
telemetry.addData("Currently at", " at %7d :%7d",
leftDrive.getCurrentPosition(), rightDrive.getCurrentPosition(), backrightDrive.getCurrentPosition(), backleftDrive.getCurrentPosition());
telemetry.update();
}
leftDrive.setPower(0);
rightDrive.setPower(0);
backrightDrive.setPower(0);
backleftDrive.setPower(0);
// Turn off RUN_TO_POSITION
leftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
rightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backleftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backrightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
sleep(250); // optional pause after each move.
}
}
public void armEncoder(double speed,
double Inches, double timeoutS) {
int newarmTarget;
if (opModeIsActive()) {
// Determine new target position, and pass to motor controller
newarmTarget = arm.getCurrentPosition() + (int) (Inches * COUNTS_PER_ARM_INCH);
arm.setTargetPosition(newarmTarget);
// Turn On RUN_TO_POSITION
arm.setMode(DcMotor.RunMode.RUN_TO_POSITION);
// reset the timeout time and start motion.
runtime.reset();
arm.setPower(Math.abs(speed));
// keep looping while we are still active, and there is time left, and both motors are running.
// Note: We use (isBusy() && isBusy()) in the loop test, which means that when EITHER motor hits
// its target position, the motion will stop. This is "safer" in the event that the robot will
// always end the motion as soon as possible.
// However, if you require that BOTH motors have finished their moves before the robot continues
// onto the next step, use (isBusy() || isBusy()) in the loop test.
while (opModeIsActive() &&
(runtime.seconds() < timeoutS) &&
(arm.isBusy())) {
// Display it for the driver.
telemetry.addData("Running to", " %7d", newarmTarget);
telemetry.addData("Currently at", " at %7d",
arm.getCurrentPosition());
telemetry.update();
}
arm.setPower(0);
// Turn off RUN_TO_POSITION
arm.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
}
}
}

View File

@ -0,0 +1,477 @@
/* Copyright (c) 2017 FIRST. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided that
* the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.firstinspires.ftc.teamcode;
import android.annotation.SuppressLint;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DistanceSensor;
import com.qualcomm.robotcore.hardware.Servo;
import com.qualcomm.robotcore.util.ElapsedTime;
import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;
/**
* This file illustrates the concept of driving a path based on encoder counts.
* The code is structured as a LinearOpMode
*
* The code REQUIRES that you DO have encoders on the wheels,
* otherwise you would use: RobotAutoDriveByTime;
*
* This code ALSO requires that the drive Motors have been configured such that a positive
* power command moves them forward, and causes the encoders to count UP.
*
* The desired path in this example is:
* - Drive forward for 48 inches
* - Spin right for 12 Inches
* - Drive Backward for 24 inches
* - Stop and close the claw.
*
* The code is written using a method called: encoderDrive(speed, leftInches, rightInches, timeoutS)
* that performs the actual movement.
* This method assumes that each movement is relative to the last stopping place.
* There are other ways to perform encoder based moves, but this method is probably the simplest.
* This code uses the RUN_TO_POSITION mode to enable the Motor controllers to generate the run profile
*
* Use Android Studio to Copy this Class, and Paste it into your team's code folder with a new name.
* Remove or comment out the @Disabled line to add this opmode to the Driver Station OpMode list
*/
@Autonomous(name="red (backstage)", group="Robot")
//@Disabled
public class RedBackStage extends LinearOpMode {
/* Declare OpMode members. */
private DcMotor leftDrive = null;
private DcMotor rightDrive = null;
private DcMotor backrightDrive = null;
private DcMotor backleftDrive = null;
private DistanceSensor distanceRight = null;
private DistanceSensor distanceLeft = null;
private Servo wrist = null;
private Servo gripper = null;
private DcMotor arm = null;
private DistanceSensor distance = null;
private ElapsedTime runtime = new ElapsedTime();
// Calculate the COUNTS_PER_INCH for your specific drive train.
// Go to your motor vendor website to determine your motor's COUNTS_PER_MOTOR_REV
// For external drive gearing, set DRIVE_GEAR_REDUCTION as needed.
// For example, use a value of 2.0 for a 12-tooth spur gear driving a 24-tooth spur gear.
// This is gearing DOWN for less speed and more torque.
// For gearing UP, use a gear ratio less than 1.0. Note this will affect the direction of wheel rotation.
static final double COUNTS_PER_MOTOR_REV = 537.6; // eg: TETRIX Motor Encoder
static final double DRIVE_GEAR_REDUCTION = 1.0; // No External Gearing.
static final double WHEEL_DIAMETER_INCHES = 3.77953; // For figuring circumference
static final double COUNTS_PER_INCH = (COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCTION) /
(WHEEL_DIAMETER_INCHES * Math.PI);
static final double COUNTS_PER_ARM_INCH = (COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCTION) / (2.7 * Math.PI);
double DRIVE_SPEED = 0.5;
static final double TURN_SPEED = 0.4;
static final double LONG_TIMEOUT = 1000;
static final double DEGREE_TOO_DISTANCE = 0.21944444444;
static final double ARM_SPEED = .1;
static final double TICKS_TO_DEGREES = 0.07462686567;
@Override
public void runOpMode()
{
hardwareinit();
// Send telemetry message to indicate successful Encoder reset
/* telemetry.addData("Starting at", "%7d :%7d",
leftDrive.getCurrentPosition(),
rightDrive.getCurrentPosition(),
backleftDrive.getCurrentPosition(),
backrightDrive.getCurrentPosition());*/
telemetry.update();
// Wait for the game to start (driver presses PLAY)
waitForStart();
{
executeAuto();
}
// Step through each leg of the path,
// Note: Reverse movement is obtained by setting a negative distance (not speed)
}
//
public void driveForward(double distance)
{
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT); // S1: Forward 47 Inches with 5 Sec timeout
}
public void straightLeft(double distance)
{
leftDrive.setDirection(DcMotor.Direction.FORWARD);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.FORWARD);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT);
}
public void straightRight(double distance)
{
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.REVERSE);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.FORWARD);
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT);
}
public void turnLeft(double degrees)
{
leftDrive.setDirection(DcMotor.Direction.FORWARD);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.FORWARD);
double turning_distance = degrees * DEGREE_TOO_DISTANCE;
encoderDrive(DRIVE_SPEED, turning_distance, turning_distance, LONG_TIMEOUT);
}
public void turnRight(double degrees) {
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.REVERSE);
backrightDrive.setDirection(DcMotor.Direction.FORWARD);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
double turning_distance = degrees * DEGREE_TOO_DISTANCE;
encoderDrive(DRIVE_SPEED, turning_distance, turning_distance, LONG_TIMEOUT);
}
public void raisearm(int degrees) {
armEncoder(ARM_SPEED, degrees*TICKS_TO_DEGREES, LONG_TIMEOUT);
}
public void hardwareinit()
{
leftDrive = hardwareMap.get(DcMotor.class, "Drive front lt");
rightDrive = hardwareMap.get(DcMotor.class, "Drive front rt");
backleftDrive = hardwareMap.get(DcMotor.class, "Drive back lt");
backrightDrive = hardwareMap.get(DcMotor.class, "Drive back rt");
distanceRight = hardwareMap.get(DistanceSensor.class, "color right");
distanceLeft = hardwareMap.get(DistanceSensor.class, "color left");
gripper = hardwareMap.get(Servo.class, "gripper");
arm = hardwareMap.get(DcMotor.class, "arm raise");
wrist = hardwareMap.get(Servo.class, "wrist");
distance = hardwareMap.get(DistanceSensor.class, "distance");
sleep(1000);
// To drive forward, most robots need the motor on one side to be reversed, because the axles point in opposite directions.
// When run, this OpMode should start both motors driving forward. So adjust these two lines based on your first test drive.
// Note: The settings here assume direct drive on left and right wheels. Gear Reduction or 90 Deg drives may require direction flips
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
arm.setDirection(DcMotor.Direction.REVERSE);
leftDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
rightDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
backleftDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
backrightDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
arm.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
leftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
rightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backrightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backleftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
arm.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
}
public void testWrist()
{
wrist.setPosition(0);
sleep(3000);
wrist.setPosition(1);
sleep(3000);
}
public void testGripper()
{
gripper.setPosition(0.5);
}
@SuppressLint("SuspiciousIndentation")
public void executeAuto()
{
backrightDrive.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
backleftDrive.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
leftDrive.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
rightDrive.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
arm.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
driveForward(26);
sleep(500);
int distanceleft = (int)distanceLeft.getDistance(DistanceUnit.INCH);
int distanceright = (int)distanceRight.getDistance(DistanceUnit.INCH);
telemetry.addData("color left sensor",distanceleft);
telemetry.addData("color right sensor",distanceright);
telemetry.update();
if (distanceleft < 7)
{
telemetry.addData("postion","left");
telemetry.update();
turnLeft(90);
straightLeft(2);
driveForward(5.5);
raisearm(80);
arm.setPower(0);
driveForward(-21);
straightLeft(34);
driveForward(-10);
DRIVE_SPEED = .3;
straightRight(35);
driveForward(-5);
raisearm(80);
wrist.setPosition(0);
raisearm(100);
gripper.setPosition(1);
sleep(500);
driveForward(4.5);
sleep(500);
driveForward(1.5);
raisearm(-50);
sleep(500);
wrist.setPosition(1);
raisearm(-70);
driveForward(-6);
terminateOpModeNow();
}
if (distanceright < 7)
{
telemetry.addData("postion", "right");
telemetry.update();
straightRight(12);
raisearm(80);
arm.setPower(0);
driveForward(-15.5);
turnLeft(90);
straightLeft(15);
driveForward(-20.5);
DRIVE_SPEED = .3;
straightRight(19);
driveForward(-1.5);
raisearm(80);
wrist.setPosition(0);
raisearm(100);
gripper.setPosition(1);
sleep(500);
driveForward(8.5);
raisearm(-50);
sleep(500);
wrist.setPosition(1);
raisearm(-70);
driveForward(-6);
terminateOpModeNow();
}
else
telemetry.addData("postion","center");
telemetry.update();
driveForward(3.5);
raisearm(80);
arm.setPower(0);
driveForward(-8);
straightRight(11.5);
driveForward(-15);
turnLeft(90);
straightLeft(15);
driveForward(-18);
DRIVE_SPEED = .3;
straightRight(29);
turnRight(5);
raisearm(80);
wrist.setPosition(0);
raisearm(100);
gripper.setPosition(1);
sleep(500);
driveForward(5);
raisearm(-50);
sleep(500);
wrist.setPosition(1);
raisearm(-70);
driveForward(-6);
terminateOpModeNow();
//Values were created from robot with wheel issues 9/28/23
telemetry.addData("Path", "Complete");
telemetry.update();
// sleep(1000); // pause to display final telemetry message.
}
/*
* Method to perform a relative move, based on encoder counts.
* Encoders are not reset as the move is based on the current position.
* Move will stop if any of three conditions occur:
* 1) Move gets to the desired position
* 2) Move runs out of time
* 3) Driver stops the opmode running.
*/
public void encoderDrive(double speed,
double leftInches, double rightInches,
double timeoutS) {
int newLeftTarget;
int newRightTarget;
int newBackLeftTarget;
int newbackRightTarget;
if (opModeIsActive()) {
// Determine new target position, and pass to motor controller
newLeftTarget = leftDrive.getCurrentPosition() + (int) (leftInches * COUNTS_PER_INCH);
newRightTarget = rightDrive.getCurrentPosition() + (int) (rightInches * COUNTS_PER_INCH);
newBackLeftTarget = backleftDrive.getCurrentPosition() + (int) (leftInches * COUNTS_PER_INCH);
newbackRightTarget = backrightDrive.getCurrentPosition() + (int) (rightInches * COUNTS_PER_INCH);
leftDrive.setTargetPosition(newLeftTarget);
rightDrive.setTargetPosition(newRightTarget);
backrightDrive.setTargetPosition(newbackRightTarget);
backleftDrive.setTargetPosition(newBackLeftTarget);
// Turn On RUN_TO_POSITION
leftDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
rightDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
backrightDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
backleftDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
// reset the timeout time and start motion.
runtime.reset();
leftDrive.setPower(Math.abs(speed));
rightDrive.setPower(Math.abs(speed));
backrightDrive.setPower(Math.abs(speed));
backleftDrive.setPower(Math.abs(speed));
// keep looping while we are still active, and there is time left, and both motors are running.
// Note: We use (isBusy() && isBusy()) in the loop test, which means that when EITHER motor hits
// its target position, the motion will stop. This is "safer" in the event that the robot will
// always end the motion as soon as possible.
// However, if you require that BOTH motors have finished their moves before the robot continues
// onto the next step, use (isBusy() || isBusy()) in the loop test.
while (opModeIsActive() &&
(runtime.seconds() < timeoutS) &&
(leftDrive.isBusy() && rightDrive.isBusy() && backleftDrive.isBusy() && backrightDrive.isBusy() && backrightDrive.isBusy())) {
// Display it for the driver.
telemetry.addData("Running to", " %7d :%7d", newLeftTarget, newRightTarget);
telemetry.addData("Currently at", " at %7d :%7d",
leftDrive.getCurrentPosition(), rightDrive.getCurrentPosition(), backrightDrive.getCurrentPosition(), backleftDrive.getCurrentPosition());
telemetry.update();
}
leftDrive.setPower(0);
rightDrive.setPower(0);
backrightDrive.setPower(0);
backleftDrive.setPower(0);
// Turn off RUN_TO_POSITION
leftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
rightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backleftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backrightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
sleep(250); // optional pause after each move.
}
}
public void armEncoder(double speed,
double Inches, double timeoutS) {
int newarmTarget;
if (opModeIsActive()) {
// Determine new target position, and pass to motor controller
newarmTarget = arm.getCurrentPosition() + (int) (Inches * COUNTS_PER_ARM_INCH);
arm.setTargetPosition(newarmTarget);
// Turn On RUN_TO_POSITION
arm.setMode(DcMotor.RunMode.RUN_TO_POSITION);
// reset the timeout time and start motion.
runtime.reset();
arm.setPower(Math.abs(speed));
// keep looping while we are still active, and there is time left, and both motors are running.
// Note: We use (isBusy() && isBusy()) in the loop test, which means that when EITHER motor hits
// its target position, the motion will stop. This is "safer" in the event that the robot will
// always end the motion as soon as possible.
// However, if you require that BOTH motors have finished their moves before the robot continues
// onto the next step, use (isBusy() || isBusy()) in the loop test.
while (opModeIsActive() &&
(runtime.seconds() < timeoutS) &&
(arm.isBusy())) {
// Display it for the driver.
telemetry.addData("Running to", " %7d", newarmTarget);
telemetry.addData("Currently at", " at %7d",
arm.getCurrentPosition());
telemetry.update();
}
arm.setPower(0);
// Turn off RUN_TO_POSITION
arm.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
}
}
}

View File

@ -0,0 +1,479 @@
/* Copyright (c) 2017 FIRST. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided that
* the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.firstinspires.ftc.teamcode;
import android.annotation.SuppressLint;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DistanceSensor;
import com.qualcomm.robotcore.hardware.Servo;
import com.qualcomm.robotcore.util.ElapsedTime;
import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;
/**
* This file illustrates the concept of driving a path based on encoder counts.
* The code is structured as a LinearOpMode
*
* The code REQUIRES that you DO have encoders on the wheels,
* otherwise you would use: RobotAutoDriveByTime;
*
* This code ALSO requires that the drive Motors have been configured such that a positive
* power command moves them forward, and causes the encoders to count UP.
*
* The desired path in this example is:
* - Drive forward for 48 inches
* - Spin right for 12 Inches
* - Drive Backward for 24 inches
* - Stop and close the claw.
*
* The code is written using a method called: encoderDrive(speed, leftInches, rightInches, timeoutS)
* that performs the actual movement.
* This method assumes that each movement is relative to the last stopping place.
* There are other ways to perform encoder based moves, but this method is probably the simplest.
* This code uses the RUN_TO_POSITION mode to enable the Motor controllers to generate the run profile
*
* Use Android Studio to Copy this Class, and Paste it into your team's code folder with a new name.
* Remove or comment out the @Disabled line to add this opmode to the Driver Station OpMode list
*/
@Autonomous(name="red (backstage test subject 716,980)", group="Robot")
//@Disabled
public class RedBackStageTest extends LinearOpMode {
/* Declare OpMode members. */
private DcMotor leftDrive = null;
private DcMotor rightDrive = null;
private DcMotor backrightDrive = null;
private DcMotor backleftDrive = null;
private DistanceSensor distanceRight = null;
private DistanceSensor distanceLeft = null;
private Servo wrist = null;
private Servo gripper = null;
private DcMotor arm = null;
private DistanceSensor distance = null;
private ElapsedTime runtime = new ElapsedTime();
// Calculate the COUNTS_PER_INCH for your specific drive train.
// Go to your motor vendor website to determine your motor's COUNTS_PER_MOTOR_REV
// For external drive gearing, set DRIVE_GEAR_REDUCTION as needed.
// For example, use a value of 2.0 for a 12-tooth spur gear driving a 24-tooth spur gear.
// This is gearing DOWN for less speed and more torque.
// For gearing UP, use a gear ratio less than 1.0. Note this will affect the direction of wheel rotation.
static final double COUNTS_PER_MOTOR_REV = 537.6; // eg: TETRIX Motor Encoder
static final double DRIVE_GEAR_REDUCTION = 1.0; // No External Gearing.
static final double WHEEL_DIAMETER_INCHES = 3.77953; // For figuring circumference
static final double COUNTS_PER_INCH = (COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCTION) /
(WHEEL_DIAMETER_INCHES * Math.PI);
static final double COUNTS_PER_ARM_INCH = (COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCTION) / (2.7 * Math.PI);
static final double DRIVE_SPEED = 0.35;
static final double TURN_SPEED = 0.4;
static final double LONG_TIMEOUT = 1000;
static final double DEGREE_TOO_DISTANCE = 0.21944444444;
static final double ARM_SPEED = .1;
static final double TICKS_TO_DEGREES = 0.07462686567;
@Override
public void runOpMode()
{
hardwareinit();
// Send telemetry message to indicate successful Encoder reset
/* telemetry.addData("Starting at", "%7d :%7d",
leftDrive.getCurrentPosition(),
rightDrive.getCurrentPosition(),
backleftDrive.getCurrentPosition(),
backrightDrive.getCurrentPosition());*/
telemetry.update();
// Wait for the game to start (driver presses PLAY)
waitForStart();
{
executeAuto();
}
// Step through each leg of the path,
// Note: Reverse movement is obtained by setting a negative distance (not speed)
}
//
public void driveForward(double distance)
{
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT); // S1: Forward 47 Inches with 5 Sec timeout
}
public void straightLeft(double distance)
{
leftDrive.setDirection(DcMotor.Direction.FORWARD);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.FORWARD);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT);
}
public void straightRight(double distance)
{
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.REVERSE);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.FORWARD);
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT);
}
public void turnLeft(double degrees)
{
leftDrive.setDirection(DcMotor.Direction.FORWARD);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.FORWARD);
double turning_distance = degrees * DEGREE_TOO_DISTANCE;
encoderDrive(DRIVE_SPEED, turning_distance, turning_distance, LONG_TIMEOUT);
}
public void turnRight(double degrees) {
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.REVERSE);
backrightDrive.setDirection(DcMotor.Direction.FORWARD);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
double turning_distance = degrees * DEGREE_TOO_DISTANCE;
encoderDrive(DRIVE_SPEED, turning_distance, turning_distance, LONG_TIMEOUT);
}
public void raisearm(int degrees) {
armEncoder(ARM_SPEED, degrees*TICKS_TO_DEGREES, LONG_TIMEOUT);
}
public void hardwareinit()
{
leftDrive = hardwareMap.get(DcMotor.class, "Drive front lt");
rightDrive = hardwareMap.get(DcMotor.class, "Drive front rt");
backleftDrive = hardwareMap.get(DcMotor.class, "Drive back lt");
backrightDrive = hardwareMap.get(DcMotor.class, "Drive back rt");
distanceRight = hardwareMap.get(DistanceSensor.class, "color right");
distanceLeft = hardwareMap.get(DistanceSensor.class, "color left");
gripper = hardwareMap.get(Servo.class, "gripper");
arm = hardwareMap.get(DcMotor.class, "arm raise");
wrist = hardwareMap.get(Servo.class, "wrist");
distance = hardwareMap.get(DistanceSensor.class, "distance");
sleep(1000);
// To drive forward, most robots need the motor on one side to be reversed, because the axles point in opposite directions.
// When run, this OpMode should start both motors driving forward. So adjust these two lines based on your first test drive.
// Note: The settings here assume direct drive on left and right wheels. Gear Reduction or 90 Deg drives may require direction flips
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
arm.setDirection(DcMotor.Direction.REVERSE);
leftDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
rightDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
backleftDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
backrightDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
arm.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
leftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
rightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backrightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backleftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
arm.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
}
public void testWrist()
{
wrist.setPosition(0);
sleep(3000);
wrist.setPosition(1);
sleep(3000);
}
public void testGripper()
{
gripper.setPosition(0.5);
}
@SuppressLint("SuspiciousIndentation")
public void executeAuto()
{
arm.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
driveForward(26);
sleep(500);
int distanceleft = (int)distanceLeft.getDistance(DistanceUnit.INCH);
int distanceright = (int)distanceRight.getDistance(DistanceUnit.INCH);
telemetry.addData("color left sensor",distanceleft);
telemetry.addData("color right sensor",distanceright);
telemetry.update();
if (distanceleft < 7)
{
telemetry.addData("position","left");
telemetry.update();
turnLeft(90);
straightLeft(2);
driveForward(5.5);
raisearm(80);
arm.setPower(0);
driveForward(-21);
straightLeft(34);
driveForward(-10);
straightRight(35);
driveForward(-5);
raisearm(80);
wrist.setPosition(0);
raisearm(100);
gripper.setPosition(1);
sleep(500);
driveForward(4.5);
raisearm(-50);
wrist.setPosition(1);
raisearm(-70);
driveForward(1.5);
/* need to review */
straightLeft(30);
driveForward(-15);
terminateOpModeNow();
}
if (distanceright < 7)
{
telemetry.addData("postion", "right");
telemetry.update();
straightRight(12);
raisearm(80);
arm.setPower(0);
driveForward(-15.5);
turnLeft(90);
straightLeft(15);
driveForward(-20.5);
straightRight(19);
driveForward(-1.5);
raisearm(80);
wrist.setPosition(0);
raisearm(100);
gripper.setPosition(1);
driveForward(8.5);
raisearm(-50);
wrist.setPosition(1);
raisearm(-70);
/* need to review */
straightLeft(29);
driveForward(-10);
terminateOpModeNow();
}
else
telemetry.addData("postion","center");
telemetry.update();
driveForward(3.5);
raisearm(80);
arm.setPower(0);
driveForward(-8);
straightRight(11.5);
driveForward(-15);
turnLeft(90);
straightLeft(15);
driveForward(-18);
straightRight(29);
turnRight(10);
raisearm(80);
wrist.setPosition(0);
raisearm(100);
gripper.setPosition(1);
driveForward(5);
/* added from bluebackstage */
raisearm(-50);
wrist.setPosition(1);
raisearm(-70);
straightLeft(29);
driveForward(-10);
terminateOpModeNow();
//Values were created from robot with wheel issues 9/28/23
telemetry.addData("Path", "Complete");
telemetry.update();
// sleep(1000); // pause to display final telemetry message.
}
/*
* Method to perform a relative move, based on encoder counts.
* Encoders are not reset as the move is based on the current position.
* Move will stop if any of three conditions occur:
* 1) Move gets to the desired position
* 2) Move runs out of time
* 3) Driver stops the opmode running.
*/
public void encoderDrive(double speed,
double leftInches, double rightInches,
double timeoutS) {
int newLeftTarget;
int newRightTarget;
int newBackLeftTarget;
int newbackRightTarget;
if (opModeIsActive()) {
// Determine new target position, and pass to motor controller
newLeftTarget = leftDrive.getCurrentPosition() + (int) (leftInches * COUNTS_PER_INCH);
newRightTarget = rightDrive.getCurrentPosition() + (int) (rightInches * COUNTS_PER_INCH);
newBackLeftTarget = backleftDrive.getCurrentPosition() + (int) (leftInches * COUNTS_PER_INCH);
newbackRightTarget = backrightDrive.getCurrentPosition() + (int) (rightInches * COUNTS_PER_INCH);
leftDrive.setTargetPosition(newLeftTarget);
rightDrive.setTargetPosition(newRightTarget);
backrightDrive.setTargetPosition(newbackRightTarget);
backleftDrive.setTargetPosition(newBackLeftTarget);
// Turn On RUN_TO_POSITION
leftDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
rightDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
backrightDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
backleftDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
// reset the timeout time and start motion.
runtime.reset();
leftDrive.setPower(Math.abs(speed));
rightDrive.setPower(Math.abs(speed));
backrightDrive.setPower(Math.abs(speed));
backleftDrive.setPower(Math.abs(speed));
// keep looping while we are still active, and there is time left, and both motors are running.
// Note: We use (isBusy() && isBusy()) in the loop test, which means that when EITHER motor hits
// its target position, the motion will stop. This is "safer" in the event that the robot will
// always end the motion as soon as possible.
// However, if you require that BOTH motors have finished their moves before the robot continues
// onto the next step, use (isBusy() || isBusy()) in the loop test.
while (opModeIsActive() &&
(runtime.seconds() < timeoutS) &&
(leftDrive.isBusy() && rightDrive.isBusy() && backleftDrive.isBusy() && backrightDrive.isBusy() && backrightDrive.isBusy())) {
// Display it for the driver.
telemetry.addData("Running to", " %7d :%7d", newLeftTarget, newRightTarget);
telemetry.addData("Currently at", " at %7d :%7d",
leftDrive.getCurrentPosition(), rightDrive.getCurrentPosition(), backrightDrive.getCurrentPosition(), backleftDrive.getCurrentPosition());
telemetry.update();
}
leftDrive.setPower(0);
rightDrive.setPower(0);
backrightDrive.setPower(0);
backleftDrive.setPower(0);
// Turn off RUN_TO_POSITION
leftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
rightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backleftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backrightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
sleep(250); // optional pause after each move.
}
}
public void armEncoder(double speed,
double Inches, double timeoutS) {
int newarmTarget;
if (opModeIsActive()) {
// Determine new target position, and pass to motor controller
newarmTarget = arm.getCurrentPosition() + (int) (Inches * COUNTS_PER_ARM_INCH);
arm.setTargetPosition(newarmTarget);
// Turn On RUN_TO_POSITION
arm.setMode(DcMotor.RunMode.RUN_TO_POSITION);
// reset the timeout time and start motion.
runtime.reset();
arm.setPower(Math.abs(speed));
// keep looping while we are still active, and there is time left, and both motors are running.
// Note: We use (isBusy() && isBusy()) in the loop test, which means that when EITHER motor hits
// its target position, the motion will stop. This is "safer" in the event that the robot will
// always end the motion as soon as possible.
// However, if you require that BOTH motors have finished their moves before the robot continues
// onto the next step, use (isBusy() || isBusy()) in the loop test.
while (opModeIsActive() &&
(runtime.seconds() < timeoutS) &&
(arm.isBusy())) {
// Display it for the driver.
telemetry.addData("Running to", " %7d", newarmTarget);
telemetry.addData("Currently at", " at %7d",
arm.getCurrentPosition());
telemetry.update();
}
arm.setPower(0);
// Turn off RUN_TO_POSITION
arm.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
}
}
}

View File

@ -0,0 +1,460 @@
/* Copyright (c) 2017 FIRST. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided that
* the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.firstinspires.ftc.teamcode;
import android.annotation.SuppressLint;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DistanceSensor;
import com.qualcomm.robotcore.hardware.Servo;
import com.qualcomm.robotcore.util.ElapsedTime;
import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;
/**
* This file illustrates the concept of driving a path based on encoder counts.
* The code is structured as a LinearOpMode
*
* The code REQUIRES that you DO have encoders on the wheels,
* otherwise you would use: RobotAutoDriveByTime;
*
* This code ALSO requires that the drive Motors have been configured such that a positive
* power command moves them forward, and causes the encoders to count UP.
*
* The desired path in this example is:
* - Drive forward for 48 inches
* - Spin right for 12 Inches
* - Drive Backward for 24 inches
* - Stop and close the claw.
*
* The code is written using a method called: encoderDrive(speed, leftInches, rightInches, timeoutS)
* that performs the actual movement.
* This method assumes that each movement is relative to the last stopping place.
* There are other ways to perform encoder based moves, but this method is probably the simplest.
* This code uses the RUN_TO_POSITION mode to enable the Motor controllers to generate the run profile
*
* Use Android Studio to Copy this Class, and Paste it into your team's code folder with a new name.
* Remove or comment out the @Disabled line to add this opmode to the Driver Station OpMode list
*/
@Autonomous(name="red (direct)", group="Robot")
//@Disabled
public class RedDirect extends LinearOpMode {
/* Declare OpMode members. */
private DcMotor leftDrive = null;
private DcMotor rightDrive = null;
private DcMotor backrightDrive = null;
private DcMotor backleftDrive = null;
private DistanceSensor distanceRight = null;
private DistanceSensor distanceLeft = null;
private Servo wrist = null;
private Servo gripper = null;
private DcMotor arm = null;
private DistanceSensor distance = null;
private ElapsedTime runtime = new ElapsedTime();
// Calculate the COUNTS_PER_INCH for your specific drive train.
// Go to your motor vendor website to determine your motor's COUNTS_PER_MOTOR_REV
// For external drive gearing, set DRIVE_GEAR_REDUCTION as needed.
// For example, use a value of 2.0 for a 12-tooth spur gear driving a 24-tooth spur gear.
// This is gearing DOWN for less speed and more torque.
// For gearing UP, use a gear ratio less than 1.0. Note this will affect the direction of wheel rotation.
static final double COUNTS_PER_MOTOR_REV = 537.6; // eg: TETRIX Motor Encoder
static final double DRIVE_GEAR_REDUCTION = 1.0; // No External Gearing.
static final double WHEEL_DIAMETER_INCHES = 3.77953; // For figuring circumference
static final double COUNTS_PER_INCH = (COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCTION) /
(WHEEL_DIAMETER_INCHES * Math.PI);
static final double COUNTS_PER_ARM_INCH = (COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCTION) / (2.7 * Math.PI);
static final double DRIVE_SPEED = 0.3;
static final double TURN_SPEED = 0.4;
static final double LONG_TIMEOUT = 1000;
static final double DEGREE_TOO_DISTANCE = 0.21944444444;
static final double ARM_SPEED = .1;
static final double TICKS_TO_DEGREES = 0.07462686567;
@Override
public void runOpMode()
{
hardwareinit();
// Send telemetry message to indicate successful Encoder reset
/* telemetry.addData("Starting at", "%7d :%7d",
leftDrive.getCurrentPosition(),
rightDrive.getCurrentPosition(),
backleftDrive.getCurrentPosition(),
backrightDrive.getCurrentPosition());*/
telemetry.update();
// Wait for the game to start (driver presses PLAY)
waitForStart();
{
executeAuto();
}
// Step through each leg of the path,
// Note: Reverse movement is obtained by setting a negative distance (not speed)
}
//
public void driveForward(double distance)
{
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT); // S1: Forward 47 Inches with 5 Sec timeout
}
public void straightLeft(double distance)
{
leftDrive.setDirection(DcMotor.Direction.FORWARD);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.FORWARD);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT);
}
public void straightRight(double distance)
{
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.REVERSE);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.FORWARD);
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT);
}
public void turnLeft(double degrees)
{
leftDrive.setDirection(DcMotor.Direction.FORWARD);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.FORWARD);
double turning_distance = degrees * DEGREE_TOO_DISTANCE;
encoderDrive(DRIVE_SPEED, turning_distance, turning_distance, LONG_TIMEOUT);
}
public void turnRight(double degrees) {
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.REVERSE);
backrightDrive.setDirection(DcMotor.Direction.FORWARD);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
double turning_distance = degrees * DEGREE_TOO_DISTANCE;
encoderDrive(DRIVE_SPEED, turning_distance, turning_distance, LONG_TIMEOUT);
}
public void raisearm(int degrees) {
armEncoder(ARM_SPEED, degrees*TICKS_TO_DEGREES, LONG_TIMEOUT);
}
public void hardwareinit()
{
leftDrive = hardwareMap.get(DcMotor.class, "Drive front lt");
rightDrive = hardwareMap.get(DcMotor.class, "Drive front rt");
backleftDrive = hardwareMap.get(DcMotor.class, "Drive back lt");
backrightDrive = hardwareMap.get(DcMotor.class, "Drive back rt");
distanceRight = hardwareMap.get(DistanceSensor.class, "color right");
distanceLeft = hardwareMap.get(DistanceSensor.class, "color left");
gripper = hardwareMap.get(Servo.class, "gripper");
arm = hardwareMap.get(DcMotor.class, "arm raise");
wrist = hardwareMap.get(Servo.class, "wrist");
distance = hardwareMap.get(DistanceSensor.class, "distance");
wrist.setPosition(1);
sleep(1000);
// To drive forward, most robots need the motor on one side to be reversed, because the axles point in opposite directions.
// When run, this OpMode should start both motors driving forward. So adjust these two lines based on your first test drive.
// Note: The settings here assume direct drive on left and right wheels. Gear Reduction or 90 Deg drives may require direction flips
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
arm.setDirection(DcMotor.Direction.REVERSE);
leftDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
rightDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
backleftDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
backrightDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
arm.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
leftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
rightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backrightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backleftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
arm.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
}
public void testWrist()
{
wrist.setPosition(0);
sleep(3000);
wrist.setPosition(1);
sleep(3000);
}
public void testGripper()
{
gripper.setPosition(0.5);
}
@SuppressLint("SuspiciousIndentation")
public void executeAuto()
{
arm.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
driveForward(26);
sleep(500);
int distanceleft = (int)distanceLeft.getDistance(DistanceUnit.INCH);
int distanceright = (int)distanceRight.getDistance(DistanceUnit.INCH);
telemetry.addData("color left sensor",distanceleft);
telemetry.addData("color right sensor",distanceright);
telemetry.update();
if (distanceleft < 7)
{
telemetry.addData("postion","left");
telemetry.update();
turnLeft(90);
straightLeft(2);
driveForward(6.5);
raisearm(80);
arm.setPower(0);
driveForward(-21);
straightLeft(32);
driveForward(-10);
straightRight(33);
driveForward(-1.5);
telemetry.addData("distance back", distance.getDistance(DistanceUnit.INCH));
raisearm(80);
wrist.setPosition(0);
raisearm(100);
gripper.setPosition(0.25);
sleep(500);
driveForward(5);
telemetry.addData("distance back", distance.getDistance(DistanceUnit.INCH));
telemetry.update();
terminateOpModeNow();
}
if (distanceright < 7)
{
telemetry.addData("postion", "right");
telemetry.update();
straightRight(12);
raisearm(80);
arm.setPower(0);
driveForward(-10);
turnLeft(90);
driveForward(12);
raisearm(80);
wrist.setPosition(0);
raisearm(100);
gripper.setPosition(0.25);
sleep(500);
driveForward(5);
terminateOpModeNow();
}
else
telemetry.addData("postion","center");
telemetry.update();
driveForward(3.5);
raisearm(80);
arm.setPower(0);
driveForward(-8);
straightRight(11.5);
driveForward(-15);
turnLeft(90);
straightLeft(15);
driveForward(-18);
straightRight(29);
driveForward(-1.5);
telemetry.addData("distance back", distance.getDistance(DistanceUnit.INCH));
raisearm(80);
wrist.setPosition(0);
raisearm(100);
gripper.setPosition(0.25);
telemetry.addData("distance back", distance.getDistance(DistanceUnit.INCH));
telemetry.update();
sleep(500);
driveForward(5);
terminateOpModeNow();
//Values were created from robot with wheel issues 9/28/23
telemetry.addData("Path", "Complete");
telemetry.update();
// sleep(1000); // pause to display final telemetry message.
}
/*
* Method to perform a relative move, based on encoder counts.
* Encoders are not reset as the move is based on the current position.
* Move will stop if any of three conditions occur:
* 1) Move gets to the desired position
* 2) Move runs out of time
* 3) Driver stops the opmode running.
*/
public void encoderDrive(double speed,
double leftInches, double rightInches,
double timeoutS) {
int newLeftTarget;
int newRightTarget;
int newBackLeftTarget;
int newbackRightTarget;
if (opModeIsActive()) {
// Determine new target position, and pass to motor controller
newLeftTarget = leftDrive.getCurrentPosition() + (int) (leftInches * COUNTS_PER_INCH);
newRightTarget = rightDrive.getCurrentPosition() + (int) (rightInches * COUNTS_PER_INCH);
newBackLeftTarget = backleftDrive.getCurrentPosition() + (int) (leftInches * COUNTS_PER_INCH);
newbackRightTarget = backrightDrive.getCurrentPosition() + (int) (rightInches * COUNTS_PER_INCH);
leftDrive.setTargetPosition(newLeftTarget);
rightDrive.setTargetPosition(newRightTarget);
backrightDrive.setTargetPosition(newbackRightTarget);
backleftDrive.setTargetPosition(newBackLeftTarget);
// Turn On RUN_TO_POSITION
leftDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
rightDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
backrightDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
backleftDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
// reset the timeout time and start motion.
runtime.reset();
leftDrive.setPower(Math.abs(speed));
rightDrive.setPower(Math.abs(speed));
backrightDrive.setPower(Math.abs(speed));
backleftDrive.setPower(Math.abs(speed));
// keep looping while we are still active, and there is time left, and both motors are running.
// Note: We use (isBusy() && isBusy()) in the loop test, which means that when EITHER motor hits
// its target position, the motion will stop. This is "safer" in the event that the robot will
// always end the motion as soon as possible.
// However, if you require that BOTH motors have finished their moves before the robot continues
// onto the next step, use (isBusy() || isBusy()) in the loop test.
while (opModeIsActive() &&
(runtime.seconds() < timeoutS) &&
(leftDrive.isBusy() && rightDrive.isBusy() && backleftDrive.isBusy() && backrightDrive.isBusy() && backrightDrive.isBusy())) {
// Display it for the driver.
telemetry.addData("Running to", " %7d :%7d", newLeftTarget, newRightTarget);
telemetry.addData("Currently at", " at %7d :%7d",
leftDrive.getCurrentPosition(), rightDrive.getCurrentPosition(), backrightDrive.getCurrentPosition(), backleftDrive.getCurrentPosition());
telemetry.update();
}
leftDrive.setPower(0);
rightDrive.setPower(0);
backrightDrive.setPower(0);
backleftDrive.setPower(0);
// Turn off RUN_TO_POSITION
leftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
rightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backleftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
backrightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
sleep(250); // optional pause after each move.
}
}
public void armEncoder(double speed,
double Inches, double timeoutS) {
int newarmTarget;
if (opModeIsActive()) {
// Determine new target position, and pass to motor controller
newarmTarget = arm.getCurrentPosition() + (int) (Inches * COUNTS_PER_ARM_INCH);
arm.setTargetPosition(newarmTarget);
// Turn On RUN_TO_POSITION
arm.setMode(DcMotor.RunMode.RUN_TO_POSITION);
// reset the timeout time and start motion.
runtime.reset();
arm.setPower(Math.abs(speed));
// keep looping while we are still active, and there is time left, and both motors are running.
// Note: We use (isBusy() && isBusy()) in the loop test, which means that when EITHER motor hits
// its target position, the motion will stop. This is "safer" in the event that the robot will
// always end the motion as soon as possible.
// However, if you require that BOTH motors have finished their moves before the robot continues
// onto the next step, use (isBusy() || isBusy()) in the loop test.
while (opModeIsActive() &&
(runtime.seconds() < timeoutS) &&
(arm.isBusy())) {
// Display it for the driver.
telemetry.addData("Running to", " %7d", newarmTarget);
telemetry.addData("Currently at", " at %7d",
arm.getCurrentPosition());
telemetry.update();
}
arm.setPower(0);
// Turn off RUN_TO_POSITION
arm.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
}
}
}

View File

@ -0,0 +1,99 @@
package org.firstinspires.ftc.teamcode;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.hardware.DcMotor;
@TeleOp( name = "scds-chassis-manual")
public class SCDSChassisDriverMode extends OpMode {
DcMotor frontRight;
DcMotor backRight;
DcMotor frontLeft;
DcMotor backLeft;
public double axial;
public double lateral;
public double yaw;
final static double MOTOR_LO_SPEED_RATIO = 3.5;
final static double MOTOR_HI_SPEED_RATIO = 2.25;
final static double ARM_POWER = 3.5;
double RUNNING_MOTOR_SPEED_RATIO = MOTOR_LO_SPEED_RATIO;
double CURRENT_SPEED_RATIO = MOTOR_HI_SPEED_RATIO;
@Override
public void init() {
telemetry.addData("Status","In Init()");
telemetry.update();
frontRight = hardwareMap.dcMotor.get("Drive front rt");
backRight = hardwareMap.dcMotor.get("Drive back rt");
frontLeft = hardwareMap.dcMotor.get("Drive front lt");
backLeft = hardwareMap.dcMotor.get("Drive back lt");
}
private void setForwardDirection() {
telemetry.addData("Status","setForwardDirection()");
telemetry.update();
frontLeft.setDirection(DcMotor.Direction.REVERSE);
backLeft.setDirection(DcMotor.Direction.FORWARD);
frontRight.setDirection(DcMotor.Direction.REVERSE);
backRight.setDirection(DcMotor.Direction.FORWARD);
}
@Override
public void loop() {
/*
Initialize the wheels
*/
setForwardDirection();
/*
Turn on high speed on the motors
*/
if(gamepad1.a) {
RUNNING_MOTOR_SPEED_RATIO = MOTOR_HI_SPEED_RATIO;
}
/*
Turn on low speed on the motors
*/
if(gamepad1.b) {
RUNNING_MOTOR_SPEED_RATIO = MOTOR_LO_SPEED_RATIO;
}
axial = -gamepad1.left_stick_y/CURRENT_SPEED_RATIO; // Note: pushing stick forward gives negative value
lateral = gamepad1.left_stick_x/CURRENT_SPEED_RATIO;
yaw = gamepad1.right_stick_x/CURRENT_SPEED_RATIO;
// Combine the joystick requests for each axis-motion to determine each wheel's power.
// Set up a variable for each drive wheel to save the power level for telemetry.
double leftFrontPower = axial + lateral + yaw;
double rightFrontPower = axial - lateral - yaw;
double leftBackPower = axial - lateral + yaw;
double rightBackPower = axial + lateral - yaw;
// Normalize the values so no wheel power exceeds 100%
// This ensures that the robot maintains the desired motion.
double max = Math.max(Math.abs(leftFrontPower), Math.abs(rightFrontPower));
max = Math.max(max, Math.abs(leftBackPower));
max = Math.max(max, Math.abs(rightBackPower));
if (max > 1.0) {
leftFrontPower /= max;
rightFrontPower /= max;
leftBackPower /= max;
rightBackPower /= max;
}
frontLeft.setPower(leftFrontPower);
frontRight.setPower(rightFrontPower);
backLeft.setPower(leftBackPower);
backRight.setPower(rightBackPower);
// Show the elapsed game time and wheel power
telemetry.addData("Front left, Right", "%4.2f, %4.2f", leftFrontPower, rightFrontPower);
telemetry.addData("Back left, Right", "%4.2f, %4.2f", leftBackPower, rightBackPower);
telemetry.update();
}
}

View File

@ -0,0 +1,4 @@
package org.firstinspires.ftc.teamcode;
public class TestCode {
}

View File

@ -0,0 +1,215 @@
package org.firstinspires.ftc.teamcode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.Servo;
@TeleOp( name = "manual control")
public class manual extends OpMode {
DcMotor arm;
Servo gripper;
Servo wrist;
public double axial;
public double lateral;
public double yaw;
DcMotor frontRight;
DcMotor backRight;
DcMotor frontLeft;
DcMotor backLeft;
DcMotor hang;
private Servo launch;
/**
* this function takes a long milliseconds parameter and sleeps
* @param millis milliseconds to sleep
*/
public void sleepmillis(long millis) {
try {
Thread.sleep(millis);
} catch (Exception e) {
}
}
/**
* stops all drive motors
*/
public void off() {
arm.setPower(0);
frontRight.setPower(0);
backRight.setPower(0);
frontLeft.setPower(0);
backLeft.setPower(0);
}
/**
* User defined init method
* This method will be called once when the INIT button is pressed.
*/
public void init() {
telemetry.addData("Status","In Init()");
telemetry.update();
arm = hardwareMap.dcMotor.get("arm raise");
gripper = hardwareMap.servo.get("gripper");
wrist = hardwareMap.servo.get("wrist");
frontRight = hardwareMap.dcMotor.get("Drive front rt");
backRight = hardwareMap.dcMotor.get("Drive back rt");
frontLeft = hardwareMap.dcMotor.get("Drive front lt");
backLeft = hardwareMap.dcMotor.get("Drive back lt");
hang = hardwareMap.dcMotor.get("hang");
launch = hardwareMap.servo.get("launch");
}
/**
* User defined init_loop method
* This method will be called repeatedly when the INIT button is pressed.
* This method is optional. By default this method takes no action.
*/
public void init_loop(){
// Wait for the game to start (driver presses PLAY)
telemetry.addData("Status", "Initialized");
telemetry.update();
}
/**
* User defined start method.
* This method will be called once when the PLAY button is first pressed.
* This method is optional. By default this method takes not action. Example usage: Starting another thread.
*/
public void start() {
}
/**
* User defined stop method
* This method will be called when this op mode is first disabled.
* The stop method is optional. By default this method takes no action.
*/
public void stop(){
}
//double num = 2.25;
final static double MOTOR_HI_SPEED_RATIO = 1.75;
final static double MOTOR_MID_SPEED_RATIO = 2;
final static double MOTOR_LO_SPEED_RATIO = 3.5;
final static double ARM_POWER = 3;
double num = MOTOR_MID_SPEED_RATIO;
/**
* User defined loop method.
* This method will be called repeatedly in a loop while this op mode is running
*/
public void loop() {
frontLeft.setDirection(DcMotor.Direction.REVERSE);
backLeft.setDirection(DcMotor.Direction.REVERSE);
frontRight.setDirection(DcMotor.Direction.FORWARD);
backRight.setDirection(DcMotor.Direction.REVERSE);
double armPower = gamepad2.right_stick_y/ARM_POWER;
// Normalize the values so no wheel power exceeds 100%
// This ensures that the robot maintains the desired motion.
if(gamepad1.a)
{
num = MOTOR_HI_SPEED_RATIO;
}
if (gamepad1.x)
{
num = MOTOR_LO_SPEED_RATIO;
}
if (gamepad1.b)
{
num = MOTOR_MID_SPEED_RATIO;
}
if(gamepad2.right_stick_y != 0)
{
arm.setPower(armPower);
telemetry.addData("joystick y value", gamepad2.right_stick_y);
telemetry.update();
}
else
{
arm.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
arm.setPower(0);
}
if(gamepad2.left_bumper && gamepad2.right_bumper)
{
launch.setPosition(0);
}
if(gamepad2.left_trigger > 0.35)
{
gripper.setPosition(1);
}
if(gamepad2.right_trigger > 0.35){
gripper.setPosition(0);
}
if(gamepad2.dpad_up)
{
wrist.setPosition(0.465);
}
if(gamepad2.dpad_down)
{
wrist.setPosition(1);
}
if(gamepad2.dpad_right)
{
wrist.setPosition(0);
}
if (gamepad1.dpad_up)
{
hang.setPower(1);
}
hang.setPower(0);
if (gamepad1.dpad_down)
{
hang.setPower(-.5);
}
else {
hang.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
hang.setPower(0);
}
axial = -gamepad1.left_stick_y/num; // Note: pushing stick forward gives negative value
lateral = gamepad1.left_stick_x/num;
yaw = gamepad1.right_stick_x/(num);
// Combine the joystick requests for each axis-motion to determine each wheel's power.
// Set up a variable for each drive wheel to save the power level for telemetry.
double leftFrontPower = axial + lateral + yaw;
double rightFrontPower = axial - lateral - yaw;
double leftBackPower = axial - lateral + yaw;
double rightBackPower = axial + lateral - yaw;
// Normalize the values so no wheel power exceeds 100%
// This ensures that the robot maintains the desired motion.
double max = Math.max(Math.abs(leftFrontPower), Math.abs(rightFrontPower));
max = Math.max(max, Math.abs(leftBackPower));
max = Math.max(max, Math.abs(rightBackPower));
if (max > 1.0) {
leftFrontPower /= max;
rightFrontPower /= max;
leftBackPower /= max;
rightBackPower /= max;
}
frontLeft.setPower(leftFrontPower);
frontRight.setPower(rightFrontPower);
backLeft.setPower(leftBackPower);
backRight.setPower(rightBackPower);
// Show the elapsed game time and wheel power
telemetry.addData("Front left, Right", "%4.2f, %4.2f", leftFrontPower, rightFrontPower);
telemetry.addData("Back left, Right", "%4.2f, %4.2f", leftBackPower, rightBackPower);
telemetry.update();
}
}

View File

@ -0,0 +1,205 @@
package org.firstinspires.ftc.teamcode;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DcMotorSimple;
import com.qualcomm.robotcore.hardware.Servo;
@TeleOp( name = "manual Chasis")
public class manualChasis extends OpMode {
DcMotor arm;
Servo gripper;
Servo wrist;
public double axial;
public double lateral;
public double yaw;
DcMotor frontRight;
DcMotor backRight;
DcMotor frontLeft;
DcMotor backLeft;
DcMotor hang;
/**
* this function takes a long milliseconds parameter and sleeps
* @param millis milliseconds to sleep
*/
public void sleepmillis(long millis) {
try {
Thread.sleep(millis);
} catch (Exception e) {
}
}
/**
* stops all drive motors
*/
public void off() {
arm.setPower(0);
frontRight.setPower(0);
backRight.setPower(0);
frontLeft.setPower(0);
backLeft.setPower(0);
}
/**
* User defined init method
* This method will be called once when the INIT button is pressed.
*/
public void init() {
telemetry.addData("Status","In Init()");
telemetry.update();
arm = hardwareMap.dcMotor.get("arm raise");
gripper = hardwareMap.servo.get("gripper");
wrist = hardwareMap.servo.get("wrist");
frontRight = hardwareMap.dcMotor.get("Drive front rt");
backRight = hardwareMap.dcMotor.get("Drive back rt");
frontLeft = hardwareMap.dcMotor.get("Drive front lt");
backLeft = hardwareMap.dcMotor.get("Drive back lt");
hang = hardwareMap.dcMotor.get("hang");
}
/**
* User defined init_loop method
* This method will be called repeatedly when the INIT button is pressed.
* This method is optional. By default this method takes no action.
*/
public void init_loop(){
// Wait for the game to start (driver presses PLAY)
telemetry.addData("Status", "Initialized");
telemetry.update();
}
/**
* User defined start method.
* This method will be called once when the PLAY button is first pressed.
* This method is optional. By default this method takes not action. Example usage: Starting another thread.
*/
public void start() {
}
/**
* User defined stop method
* This method will be called when this op mode is first disabled.
* The stop method is optional. By default this method takes no action.
*/
public void stop(){
}
//double num = 2.25;
final static double MOTOR_HI_SPEED_RATIO = 2.25;
final static double MOTOR_LO_SPEED_RATIO = 3.5;
final static double ARM_POWER = 3.5;
double num = MOTOR_HI_SPEED_RATIO;
/**
* User defined loop method.
* This method will be called repeatedly in a loop while this op mode is running
*/
public void loop() {
frontLeft.setDirection(DcMotor.Direction.REVERSE);
backLeft.setDirection(DcMotor.Direction.FORWARD);
frontRight.setDirection(DcMotor.Direction.REVERSE);
backRight.setDirection(DcMotor.Direction.FORWARD);
double armPower = gamepad2.right_stick_y/ARM_POWER;
// Normalize the values so no wheel power exceeds 100%
// This ensures that the robot maintains the desired motion.
if(gamepad1.a)
{
num = MOTOR_HI_SPEED_RATIO;
}
if (gamepad1.b)
{
num = MOTOR_LO_SPEED_RATIO;
}
if(gamepad2.right_stick_y != 0)
{
arm.setPower(armPower);
telemetry.addData("joystick y value", gamepad2.right_stick_y);
telemetry.update();
}
else
{
arm.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
arm.setPower(0);
}
if(gamepad2.left_trigger > 0.35)
{
gripper.setPosition(0);
}
if(gamepad2.right_trigger > 0.35){
gripper.setPosition(1);
}
if(gamepad2.dpad_up)
{
wrist.setPosition(0.4);
}
if(gamepad2.dpad_down)
{
wrist.setPosition(1);
}
if(gamepad2.dpad_right)
{
wrist.setPosition(0);
}
if (gamepad1.dpad_up)
{
hang.setPower(1);
}
hang.setPower(0);
if (gamepad1.dpad_down)
{
hang.setPower(-.5);
}
else {
hang.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
hang.setPower(0);
}
axial = -gamepad1.left_stick_y/num; // Note: pushing stick forward gives negative value
lateral = gamepad1.left_stick_x/num;
yaw = gamepad1.right_stick_x/(num);
// Combine the joystick requests for each axis-motion to determine each wheel's power.
// Set up a variable for each drive wheel to save the power level for telemetry.
double leftFrontPower = axial + lateral + yaw;
double rightFrontPower = axial - lateral - yaw;
double leftBackPower = axial - lateral + yaw;
double rightBackPower = axial + lateral - yaw;
// Normalize the values so no wheel power exceeds 100%
// This ensures that the robot maintains the desired motion.
double max = Math.max(Math.abs(leftFrontPower), Math.abs(rightFrontPower));
max = Math.max(max, Math.abs(leftBackPower));
max = Math.max(max, Math.abs(rightBackPower));
if (max > 1.0) {
leftFrontPower /= max;
rightFrontPower /= max;
leftBackPower /= max;
rightBackPower /= max;
}
frontLeft.setPower(leftFrontPower);
frontRight.setPower(rightFrontPower);
backLeft.setPower(leftBackPower);
backRight.setPower(rightBackPower);
// Show the elapsed game time and wheel power
telemetry.addData("Front left, Right", "%4.2f, %4.2f", leftFrontPower, rightFrontPower);
telemetry.addData("Back left, Right", "%4.2f, %4.2f", leftBackPower, rightBackPower);
telemetry.update();
}
}

View File

@ -0,0 +1,7 @@
package org.firstinspires.ftc.teamcode.reorg;
import org.firstinspires.ftc.robotcore.external.Telemetry;
public interface AutonomousCommand {
public void execute(boolean value, Telemetry telemetry);
}

View File

@ -0,0 +1,18 @@
package org.firstinspires.ftc.teamcode.reorg;
public class AutonomousConstant {
static final double COUNTS_PER_MOTOR_REV = 537.6; // eg: TETRIX Motor Encoder
static final double DRIVE_GEAR_REDUCTION = 1.0; // No External Gearing.
static final double WHEEL_DIAMETER_INCHES = 3.77953; // For figuring circumference
static final double COUNTS_PER_INCH = (COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCTION) / (WHEEL_DIAMETER_INCHES * Math.PI);
static final double COUNTS_PER_ARM_INCH = (COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCTION) / (2.7 * Math.PI);
static final double DRIVE_SPEED = 0.3;
static final double TURN_SPEED = 0.4;
static final double LONG_TIMEOUT = 1000;
static final double DEGREE_TOO_DISTANCE = 0.21944444444;
static final double ARM_SPEED = .1;
static final double TICKS_TO_DEGREES = 0.07462686567;
}

View File

@ -0,0 +1,52 @@
package org.firstinspires.ftc.teamcode.reorg;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
@Autonomous(name="auto-test-facade", group="Robot")
public class AutonomousTestFacade extends LinearOpMode {
@Override
public void runOpMode() {
/*
Class where all our initialization code lives
To use it, we just instantiate a copy of it!
*/
AutonomousTestService service = new AutonomousTestService(hardwareMap);
/*
Initialize the hardware stuff
*/
service.initializeHardware(); // good
/*
There's a sleep here, need to determine if it's needed
sleep(1000);
*/
/*
Initialize the direction stuff
*/
service.initializeDirection(); // good
/*
Stop and reset all encoders
*/
service.initializeEncoders(); // good
/*
Update telemetry
*/
telemetry.update();
/*
From the JavaDoc: Pauses the Linear Op Mode until start has been pressed
or until the current thread is interrupted.
*/
waitForStart();
{
service.execute(opModeIsActive(), telemetry);
}
}
}

View File

@ -0,0 +1,240 @@
package org.firstinspires.ftc.teamcode.reorg;
import com.qualcomm.robotcore.hardware.ColorSensor;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.HardwareMap;
import com.qualcomm.robotcore.hardware.Servo;
import com.qualcomm.robotcore.util.ElapsedTime;
import org.firstinspires.ftc.robotcore.external.Telemetry;
public class AutonomousTestService implements AutonomousCommand {
private DcMotor leftDrive;
private DcMotor rightDrive;
private DcMotor backRightDrive;
private DcMotor backLeftDrive;
private ColorSensor colorRight;
private ColorSensor colorLeft;
private Servo wrist;
private Servo gripper;
private DcMotor arm;
private ElapsedTime runTime;
public AutonomousTestService(HardwareMap hwMap) {
this.runTime = new ElapsedTime();
leftDrive = hwMap.get(DcMotor.class, "Drive front lt");
rightDrive = hwMap.get(DcMotor.class, "Drive front rt");
backLeftDrive = hwMap.get(DcMotor.class, "Drive back lt");
backRightDrive = hwMap.get(DcMotor.class, "Drive back rt");
colorRight = hwMap.get(ColorSensor.class, "color right");
colorLeft = hwMap.get(ColorSensor.class, "color left");
arm = hwMap.get(DcMotor.class, "arm raise");
wrist = hwMap.get(Servo.class, "wrist");
gripper = hwMap.get(Servo.class, "gripper");
}
public void initializeHardware() {
setWristPosition(1);
setGripperPosition(1);
arm.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
}
private void setWristPosition(int position) {
wrist.setPosition(position);
}
private void setGripperPosition(int position) {
wrist.setPosition(position);
}
public void initializeDirection() {
setDriveDirectionForward();
setArmDirection(DcMotor.Direction.REVERSE);
}
public void initializeEncoders() {
setDriveModeStopAndResetEncoder();
setDriveModeRunUsingEncoder();
setArmDriveModeStopAndResetEncoder();
setArmDriveModeRunUsingEncoder();
}
private void setDriveDirectionForward() {
leftDrive.setDirection(DcMotor.Direction.REVERSE);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backLeftDrive.setDirection(DcMotor.Direction.REVERSE);
backRightDrive.setDirection(DcMotor.Direction.REVERSE);
}
private void setDriveDirectionLeft() {
leftDrive.setDirection(DcMotor.Direction.FORWARD);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backLeftDrive.setDirection(DcMotor.Direction.FORWARD);
backRightDrive.setDirection(DcMotor.Direction.REVERSE);
}
private void setDriveDirectionStraightLeft() {
leftDrive.setDirection(DcMotor.Direction.FORWARD);
rightDrive.setDirection(DcMotor.Direction.FORWARD);
backLeftDrive.setDirection(DcMotor.Direction.REVERSE);
backRightDrive.setDirection(DcMotor.Direction.FORWARD);
}
private void turn(double degrees, boolean isOpModeActive, Telemetry telemetry) {
double turning_distance = degrees * AutonomousConstant.DEGREE_TOO_DISTANCE;
move(turning_distance, isOpModeActive, telemetry);
}
private void move(double degrees, boolean isOpModeActive, Telemetry telemetry) {
encoderDrive(AutonomousConstant.DRIVE_SPEED, degrees, degrees, AutonomousConstant.LONG_TIMEOUT, isOpModeActive, telemetry);
}
private void setDriveMode(DcMotor.RunMode runMode) {
leftDrive.setMode(runMode);
rightDrive.setMode(runMode);
backLeftDrive.setMode(runMode);
backRightDrive.setMode(runMode);
}
private void setArmMode(DcMotor.RunMode runMode) {
arm.setMode(runMode);
}
public void setArmDirection(DcMotor.Direction direction) {
arm.setDirection(direction);
}
public void setDriveModeStopAndResetEncoder() {
setDriveMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
}
public void setDriveModeRunUsingEncoder() {
setDriveMode(DcMotor.RunMode.RUN_USING_ENCODER);
}
public void setArmDriveModeStopAndResetEncoder() {
setArmMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
}
public void setArmDriveModeRunUsingEncoder() {
setArmMode(DcMotor.RunMode.RUN_USING_ENCODER);
}
private void setDriveTargetPosition(int nlt, int nrt, int nbrt, int nblt) {
leftDrive.setTargetPosition(nlt);
rightDrive.setTargetPosition(nrt);
backRightDrive.setTargetPosition(nbrt);
backLeftDrive.setTargetPosition(nblt);
}
public void setDriveModeRunToPosition() {
setDriveMode(DcMotor.RunMode.RUN_TO_POSITION);
}
public void setDrivePower(double speed) {
leftDrive.setPower(Math.abs(speed));
rightDrive.setPower(Math.abs(speed));
backRightDrive.setPower(Math.abs(speed));
backLeftDrive.setPower(Math.abs(speed));
}
public int getColorSensorReadingOnRightSide(Telemetry telemetry) {
telemetry.addData("Clear Right", colorRight.alpha());
telemetry.addData("Red Right", colorRight.red());
telemetry.addData("Green Right", colorRight.green());
telemetry.addData("Blue Right", colorRight.blue());
telemetry.addData("Color Sensor","right");
return colorRight.red();
}
public int getColorSensorReadingOnLeftSide(Telemetry telemetry) {
telemetry.addData("Clear Left", colorLeft.alpha());
telemetry.addData("Red Left ", colorLeft.red());
telemetry.addData("Green Left", colorLeft.green());
telemetry.addData("Blue Left", colorLeft.blue());
return colorLeft.red();
}
private int calculateCurrentPosition(int position, double distance) {
return position + (int) (distance * AutonomousConstant.COUNTS_PER_INCH);
}
private void drive(double distance, boolean isOpModeActive, Telemetry telemetry) {
encoderDrive(AutonomousConstant.DRIVE_SPEED, distance, distance, AutonomousConstant.LONG_TIMEOUT, isOpModeActive, telemetry);
}
private void encoderDrive(double speed, double leftInches, double rightInches, double timeout, boolean isOpModeActive, Telemetry telemetry) {
if (isOpModeActive) {
int ldgcp = leftDrive.getCurrentPosition();
int rdgcp = leftDrive.getCurrentPosition();
int bldgcp = leftDrive.getCurrentPosition();
int brdgcp = leftDrive.getCurrentPosition();
int nlt = calculateCurrentPosition(ldgcp, leftInches);
int nrt = calculateCurrentPosition(rdgcp, rightInches);
int nblt = calculateCurrentPosition(bldgcp, leftInches);
int nbrt = calculateCurrentPosition(brdgcp, rightInches);
setDriveTargetPosition(nlt, nrt, nblt, nbrt);
setDriveModeRunToPosition();
runTime.reset();
setDrivePower(speed);
while (isOpModeActive && (runTime.seconds() < timeout) && (leftDrive.isBusy() && rightDrive.isBusy() && backLeftDrive.isBusy() && backRightDrive.isBusy())) {
telemetry.addData("Running to", " %7d :%7d", nlt, nrt);
telemetry.addData("Currently at", " at %7d :%7d", ldgcp, rdgcp, bldgcp, brdgcp);
telemetry.update();
}
setDrivePower(0);
setDriveModeRunUsingEncoder();
}
}
@Override
public void execute(boolean isOpModeActive, Telemetry telemetry) {
/*
Do we need this? Can it be part of the initialization?
*/
// arm.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
/*
Drive forward to left/right/center placement of item
*/
setDriveDirectionForward();
drive(26, isOpModeActive, telemetry);
if (getColorSensorReadingOnLeftSide(telemetry) > 50) {
if(getColorSensorReadingOnLeftSide(telemetry) > getColorSensorReadingOnRightSide(telemetry))
telemetry.addData("color sensor","left");
setDriveDirectionLeft();
turn(90, isOpModeActive, telemetry);
setDriveDirectionStraightLeft();
move(8.5, isOpModeActive, telemetry);
}
if (getColorSensorReadingOnRightSide(telemetry) > 50) {
if(getColorSensorReadingOnRightSide(telemetry) > getColorSensorReadingOnLeftSide(telemetry))
telemetry.addData("color sensor","right");
}
}
}

BIN
doc/Image/autopath.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 229 KiB