red backstage works consistantly for 45
This commit is contained in:
@ -255,7 +255,7 @@ public class BlueBackStage extends LinearOpMode {
|
||||
raisearm(80);
|
||||
wrist.setPosition(0);
|
||||
raisearm(100);
|
||||
gripper.setPosition(0);
|
||||
gripper.setPosition(0.25);
|
||||
sleep(500);
|
||||
driveForward(5);
|
||||
terminateOpModeNow();
|
||||
@ -281,7 +281,7 @@ public class BlueBackStage extends LinearOpMode {
|
||||
raisearm(80);
|
||||
wrist.setPosition(0);
|
||||
raisearm(100);
|
||||
gripper.setPosition(0);
|
||||
gripper.setPosition(0.25);
|
||||
sleep(500);
|
||||
driveForward(5);
|
||||
terminateOpModeNow();
|
||||
@ -305,7 +305,7 @@ public class BlueBackStage extends LinearOpMode {
|
||||
raisearm(80);
|
||||
wrist.setPosition(0);
|
||||
raisearm(100);
|
||||
gripper.setPosition(0);
|
||||
gripper.setPosition(0.25);
|
||||
sleep(500);
|
||||
driveForward(5);
|
||||
terminateOpModeNow();
|
||||
|
@ -261,13 +261,17 @@ public class RedBackStage extends LinearOpMode {
|
||||
straightLeft(32);
|
||||
driveForward(-10);
|
||||
straightRight(33);
|
||||
driveForward(-1.5);
|
||||
driveForward(-7.5);
|
||||
telemetry.addData("distance back", distance.getDistance(DistanceUnit.INCH));
|
||||
raisearm(80);
|
||||
wrist.setPosition(0);
|
||||
raisearm(100);
|
||||
gripper.setPosition(0);
|
||||
gripper.setPosition(0.25);
|
||||
sleep(500);
|
||||
driveForward(5);
|
||||
telemetry.addData("distance back", distance.getDistance(DistanceUnit.INCH));
|
||||
telemetry.update();
|
||||
sleep(1000);
|
||||
terminateOpModeNow();
|
||||
|
||||
|
||||
@ -287,12 +291,16 @@ public class RedBackStage extends LinearOpMode {
|
||||
driveForward(-20.5);
|
||||
straightRight(19);
|
||||
driveForward(-1.5);
|
||||
telemetry.addData("distance back", distance.getDistance(DistanceUnit.INCH));
|
||||
raisearm(80);
|
||||
wrist.setPosition(0);
|
||||
raisearm(100);
|
||||
gripper.setPosition(0);
|
||||
gripper.setPosition(0.25);
|
||||
sleep(500);
|
||||
driveForward(5);
|
||||
telemetry.addData("distance back", distance.getDistance(DistanceUnit.INCH));
|
||||
telemetry.update();
|
||||
sleep(1000);
|
||||
terminateOpModeNow();
|
||||
|
||||
|
||||
@ -311,12 +319,16 @@ else
|
||||
driveForward(-18);
|
||||
straightRight(29);
|
||||
driveForward(-1.5);
|
||||
telemetry.addData("distance back", distance.getDistance(DistanceUnit.INCH));
|
||||
raisearm(80);
|
||||
wrist.setPosition(0);
|
||||
raisearm(100);
|
||||
gripper.setPosition(0);
|
||||
gripper.setPosition(0.25);
|
||||
sleep(500);
|
||||
driveForward(5);
|
||||
telemetry.addData("distance back", distance.getDistance(DistanceUnit.INCH));
|
||||
telemetry.update();
|
||||
sleep(1000);
|
||||
terminateOpModeNow();
|
||||
|
||||
|
||||
|
@ -0,0 +1,460 @@
|
||||
/* Copyright (c) 2017 FIRST. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification,
|
||||
* are permitted (subject to the limitations in the disclaimer below) provided that
|
||||
* the following conditions are met:
|
||||
*
|
||||
* Redistributions of source code must retain the above copyright notice, this list
|
||||
* of conditions and the following disclaimer.
|
||||
*
|
||||
* Redistributions in binary form must reproduce the above copyright notice, this
|
||||
* list of conditions and the following disclaimer in the documentation and/or
|
||||
* other materials provided with the distribution.
|
||||
*
|
||||
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
|
||||
* promote products derived from this software without specific prior written permission.
|
||||
*
|
||||
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
|
||||
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
||||
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
package org.firstinspires.ftc.teamcode;
|
||||
|
||||
import android.annotation.SuppressLint;
|
||||
|
||||
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
|
||||
import com.qualcomm.robotcore.hardware.DcMotor;
|
||||
import com.qualcomm.robotcore.hardware.DistanceSensor;
|
||||
import com.qualcomm.robotcore.hardware.Servo;
|
||||
import com.qualcomm.robotcore.util.ElapsedTime;
|
||||
|
||||
import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;
|
||||
|
||||
/**
|
||||
* This file illustrates the concept of driving a path based on encoder counts.
|
||||
* The code is structured as a LinearOpMode
|
||||
*
|
||||
* The code REQUIRES that you DO have encoders on the wheels,
|
||||
* otherwise you would use: RobotAutoDriveByTime;
|
||||
*
|
||||
* This code ALSO requires that the drive Motors have been configured such that a positive
|
||||
* power command moves them forward, and causes the encoders to count UP.
|
||||
*
|
||||
* The desired path in this example is:
|
||||
* - Drive forward for 48 inches
|
||||
* - Spin right for 12 Inches
|
||||
* - Drive Backward for 24 inches
|
||||
* - Stop and close the claw.
|
||||
*
|
||||
* The code is written using a method called: encoderDrive(speed, leftInches, rightInches, timeoutS)
|
||||
* that performs the actual movement.
|
||||
* This method assumes that each movement is relative to the last stopping place.
|
||||
* There are other ways to perform encoder based moves, but this method is probably the simplest.
|
||||
* This code uses the RUN_TO_POSITION mode to enable the Motor controllers to generate the run profile
|
||||
*
|
||||
* Use Android Studio to Copy this Class, and Paste it into your team's code folder with a new name.
|
||||
* Remove or comment out the @Disabled line to add this opmode to the Driver Station OpMode list
|
||||
*/
|
||||
|
||||
@Autonomous(name="red (direct)", group="Robot")
|
||||
//@Disabled
|
||||
public class RedDirect extends LinearOpMode {
|
||||
|
||||
/* Declare OpMode members. */
|
||||
private DcMotor leftDrive = null;
|
||||
private DcMotor rightDrive = null;
|
||||
private DcMotor backrightDrive = null;
|
||||
private DcMotor backleftDrive = null;
|
||||
private DistanceSensor distanceRight = null;
|
||||
private DistanceSensor distanceLeft = null;
|
||||
private Servo wrist = null;
|
||||
private Servo gripper = null;
|
||||
private DcMotor arm = null;
|
||||
private DistanceSensor distance = null;
|
||||
|
||||
|
||||
private ElapsedTime runtime = new ElapsedTime();
|
||||
|
||||
// Calculate the COUNTS_PER_INCH for your specific drive train.
|
||||
// Go to your motor vendor website to determine your motor's COUNTS_PER_MOTOR_REV
|
||||
// For external drive gearing, set DRIVE_GEAR_REDUCTION as needed.
|
||||
// For example, use a value of 2.0 for a 12-tooth spur gear driving a 24-tooth spur gear.
|
||||
// This is gearing DOWN for less speed and more torque.
|
||||
// For gearing UP, use a gear ratio less than 1.0. Note this will affect the direction of wheel rotation.
|
||||
static final double COUNTS_PER_MOTOR_REV = 537.6; // eg: TETRIX Motor Encoder
|
||||
static final double DRIVE_GEAR_REDUCTION = 1.0; // No External Gearing.
|
||||
static final double WHEEL_DIAMETER_INCHES = 3.77953; // For figuring circumference
|
||||
static final double COUNTS_PER_INCH = (COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCTION) /
|
||||
(WHEEL_DIAMETER_INCHES * Math.PI);
|
||||
static final double COUNTS_PER_ARM_INCH = (COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCTION) / (2.7 * Math.PI);
|
||||
static final double DRIVE_SPEED = 0.3;
|
||||
static final double TURN_SPEED = 0.4;
|
||||
|
||||
static final double LONG_TIMEOUT = 1000;
|
||||
static final double DEGREE_TOO_DISTANCE = 0.21944444444;
|
||||
static final double ARM_SPEED = .1;
|
||||
static final double TICKS_TO_DEGREES = 0.07462686567;
|
||||
|
||||
@Override
|
||||
public void runOpMode()
|
||||
{
|
||||
hardwareinit();
|
||||
|
||||
// Send telemetry message to indicate successful Encoder reset
|
||||
/* telemetry.addData("Starting at", "%7d :%7d",
|
||||
leftDrive.getCurrentPosition(),
|
||||
rightDrive.getCurrentPosition(),
|
||||
backleftDrive.getCurrentPosition(),
|
||||
backrightDrive.getCurrentPosition());*/
|
||||
|
||||
telemetry.update();
|
||||
|
||||
// Wait for the game to start (driver presses PLAY)
|
||||
waitForStart();
|
||||
{
|
||||
executeAuto();
|
||||
|
||||
}
|
||||
|
||||
// Step through each leg of the path,
|
||||
// Note: Reverse movement is obtained by setting a negative distance (not speed)
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
|
||||
public void driveForward(double distance)
|
||||
{
|
||||
leftDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
rightDrive.setDirection(DcMotor.Direction.FORWARD);
|
||||
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT); // S1: Forward 47 Inches with 5 Sec timeout
|
||||
}
|
||||
|
||||
public void straightLeft(double distance)
|
||||
{
|
||||
leftDrive.setDirection(DcMotor.Direction.FORWARD);
|
||||
rightDrive.setDirection(DcMotor.Direction.FORWARD);
|
||||
backrightDrive.setDirection(DcMotor.Direction.FORWARD);
|
||||
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT);
|
||||
}
|
||||
|
||||
public void straightRight(double distance)
|
||||
{
|
||||
leftDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
rightDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
backleftDrive.setDirection(DcMotor.Direction.FORWARD);
|
||||
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT);
|
||||
}
|
||||
|
||||
public void turnLeft(double degrees)
|
||||
{
|
||||
leftDrive.setDirection(DcMotor.Direction.FORWARD);
|
||||
rightDrive.setDirection(DcMotor.Direction.FORWARD);
|
||||
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
backleftDrive.setDirection(DcMotor.Direction.FORWARD);
|
||||
double turning_distance = degrees * DEGREE_TOO_DISTANCE;
|
||||
encoderDrive(DRIVE_SPEED, turning_distance, turning_distance, LONG_TIMEOUT);
|
||||
}
|
||||
|
||||
public void turnRight(double degrees) {
|
||||
leftDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
rightDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
backrightDrive.setDirection(DcMotor.Direction.FORWARD);
|
||||
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
double turning_distance = degrees * DEGREE_TOO_DISTANCE;
|
||||
encoderDrive(DRIVE_SPEED, turning_distance, turning_distance, LONG_TIMEOUT);
|
||||
}
|
||||
|
||||
|
||||
public void raisearm(int degrees) {
|
||||
armEncoder(ARM_SPEED, degrees*TICKS_TO_DEGREES, LONG_TIMEOUT);
|
||||
|
||||
}
|
||||
public void hardwareinit()
|
||||
{
|
||||
leftDrive = hardwareMap.get(DcMotor.class, "Drive front lt");
|
||||
rightDrive = hardwareMap.get(DcMotor.class, "Drive front rt");
|
||||
backleftDrive = hardwareMap.get(DcMotor.class, "Drive back lt");
|
||||
backrightDrive = hardwareMap.get(DcMotor.class, "Drive back rt");
|
||||
distanceRight = hardwareMap.get(DistanceSensor.class, "color right");
|
||||
distanceLeft = hardwareMap.get(DistanceSensor.class, "color left");
|
||||
gripper = hardwareMap.get(Servo.class, "gripper");
|
||||
arm = hardwareMap.get(DcMotor.class, "arm raise");
|
||||
wrist = hardwareMap.get(Servo.class, "wrist");
|
||||
distance = hardwareMap.get(DistanceSensor.class, "distance");
|
||||
wrist.setPosition(1);
|
||||
sleep(1000);
|
||||
// To drive forward, most robots need the motor on one side to be reversed, because the axles point in opposite directions.
|
||||
// When run, this OpMode should start both motors driving forward. So adjust these two lines based on your first test drive.
|
||||
// Note: The settings here assume direct drive on left and right wheels. Gear Reduction or 90 Deg drives may require direction flips
|
||||
leftDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
rightDrive.setDirection(DcMotor.Direction.FORWARD);
|
||||
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
arm.setDirection(DcMotor.Direction.REVERSE);
|
||||
|
||||
leftDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
|
||||
rightDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
|
||||
backleftDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
|
||||
backrightDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
|
||||
arm.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
|
||||
|
||||
|
||||
leftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
rightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
backrightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
backleftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
arm.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
}
|
||||
public void testWrist()
|
||||
{
|
||||
wrist.setPosition(0);
|
||||
sleep(3000);
|
||||
wrist.setPosition(1);
|
||||
sleep(3000);
|
||||
}
|
||||
public void testGripper()
|
||||
{
|
||||
gripper.setPosition(0.5);
|
||||
|
||||
}
|
||||
@SuppressLint("SuspiciousIndentation")
|
||||
public void executeAuto()
|
||||
{
|
||||
|
||||
arm.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
|
||||
driveForward(26);
|
||||
sleep(500);
|
||||
|
||||
int distanceleft = (int)distanceLeft.getDistance(DistanceUnit.INCH);
|
||||
int distanceright = (int)distanceRight.getDistance(DistanceUnit.INCH);
|
||||
telemetry.addData("color left sensor",distanceleft);
|
||||
telemetry.addData("color right sensor",distanceright);
|
||||
telemetry.update();
|
||||
|
||||
if (distanceleft < 7)
|
||||
{
|
||||
telemetry.addData("postion","left");
|
||||
telemetry.update();
|
||||
turnLeft(90);
|
||||
straightLeft(2);
|
||||
driveForward(6.5);
|
||||
raisearm(80);
|
||||
arm.setPower(0);
|
||||
driveForward(-21);
|
||||
straightLeft(32);
|
||||
driveForward(-10);
|
||||
straightRight(33);
|
||||
driveForward(-1.5);
|
||||
telemetry.addData("distance back", distance.getDistance(DistanceUnit.INCH));
|
||||
raisearm(80);
|
||||
wrist.setPosition(0);
|
||||
raisearm(100);
|
||||
gripper.setPosition(0.25);
|
||||
sleep(500);
|
||||
driveForward(5);
|
||||
telemetry.addData("distance back", distance.getDistance(DistanceUnit.INCH));
|
||||
telemetry.update();
|
||||
terminateOpModeNow();
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
if (distanceright < 7)
|
||||
{
|
||||
telemetry.addData("postion", "right");
|
||||
telemetry.update();
|
||||
straightRight(12);
|
||||
raisearm(80);
|
||||
arm.setPower(0);
|
||||
driveForward(-10);
|
||||
turnLeft(90);
|
||||
driveForward(12);
|
||||
raisearm(80);
|
||||
wrist.setPosition(0);
|
||||
raisearm(100);
|
||||
gripper.setPosition(0.25);
|
||||
sleep(500);
|
||||
driveForward(5);
|
||||
terminateOpModeNow();
|
||||
|
||||
|
||||
}
|
||||
else
|
||||
telemetry.addData("postion","center");
|
||||
telemetry.update();
|
||||
driveForward(3.5);
|
||||
raisearm(80);
|
||||
arm.setPower(0);
|
||||
driveForward(-8);
|
||||
straightRight(11.5);
|
||||
driveForward(-15);
|
||||
turnLeft(90);
|
||||
straightLeft(15);
|
||||
driveForward(-18);
|
||||
straightRight(29);
|
||||
driveForward(-1.5);
|
||||
telemetry.addData("distance back", distance.getDistance(DistanceUnit.INCH));
|
||||
raisearm(80);
|
||||
wrist.setPosition(0);
|
||||
raisearm(100);
|
||||
gripper.setPosition(0.25);
|
||||
telemetry.addData("distance back", distance.getDistance(DistanceUnit.INCH));
|
||||
telemetry.update();
|
||||
sleep(500);
|
||||
driveForward(5);
|
||||
terminateOpModeNow();
|
||||
|
||||
|
||||
|
||||
//Values were created from robot with wheel issues 9/28/23
|
||||
|
||||
telemetry.addData("Path", "Complete");
|
||||
telemetry.update();
|
||||
// sleep(1000); // pause to display final telemetry message.
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Method to perform a relative move, based on encoder counts.
|
||||
* Encoders are not reset as the move is based on the current position.
|
||||
* Move will stop if any of three conditions occur:
|
||||
* 1) Move gets to the desired position
|
||||
* 2) Move runs out of time
|
||||
* 3) Driver stops the opmode running.
|
||||
|
||||
*/
|
||||
|
||||
public void encoderDrive(double speed,
|
||||
double leftInches, double rightInches,
|
||||
double timeoutS) {
|
||||
int newLeftTarget;
|
||||
int newRightTarget;
|
||||
int newBackLeftTarget;
|
||||
int newbackRightTarget;
|
||||
|
||||
|
||||
if (opModeIsActive()) {
|
||||
|
||||
// Determine new target position, and pass to motor controller
|
||||
newLeftTarget = leftDrive.getCurrentPosition() + (int) (leftInches * COUNTS_PER_INCH);
|
||||
newRightTarget = rightDrive.getCurrentPosition() + (int) (rightInches * COUNTS_PER_INCH);
|
||||
newBackLeftTarget = backleftDrive.getCurrentPosition() + (int) (leftInches * COUNTS_PER_INCH);
|
||||
newbackRightTarget = backrightDrive.getCurrentPosition() + (int) (rightInches * COUNTS_PER_INCH);
|
||||
leftDrive.setTargetPosition(newLeftTarget);
|
||||
rightDrive.setTargetPosition(newRightTarget);
|
||||
backrightDrive.setTargetPosition(newbackRightTarget);
|
||||
backleftDrive.setTargetPosition(newBackLeftTarget);
|
||||
|
||||
// Turn On RUN_TO_POSITION
|
||||
leftDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
|
||||
rightDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
|
||||
backrightDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
|
||||
backleftDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
|
||||
|
||||
// reset the timeout time and start motion.
|
||||
runtime.reset();
|
||||
leftDrive.setPower(Math.abs(speed));
|
||||
rightDrive.setPower(Math.abs(speed));
|
||||
backrightDrive.setPower(Math.abs(speed));
|
||||
backleftDrive.setPower(Math.abs(speed));
|
||||
|
||||
// keep looping while we are still active, and there is time left, and both motors are running.
|
||||
// Note: We use (isBusy() && isBusy()) in the loop test, which means that when EITHER motor hits
|
||||
// its target position, the motion will stop. This is "safer" in the event that the robot will
|
||||
// always end the motion as soon as possible.
|
||||
// However, if you require that BOTH motors have finished their moves before the robot continues
|
||||
// onto the next step, use (isBusy() || isBusy()) in the loop test.
|
||||
while (opModeIsActive() &&
|
||||
(runtime.seconds() < timeoutS) &&
|
||||
(leftDrive.isBusy() && rightDrive.isBusy() && backleftDrive.isBusy() && backrightDrive.isBusy() && backrightDrive.isBusy())) {
|
||||
|
||||
// Display it for the driver.
|
||||
telemetry.addData("Running to", " %7d :%7d", newLeftTarget, newRightTarget);
|
||||
telemetry.addData("Currently at", " at %7d :%7d",
|
||||
leftDrive.getCurrentPosition(), rightDrive.getCurrentPosition(), backrightDrive.getCurrentPosition(), backleftDrive.getCurrentPosition());
|
||||
telemetry.update();
|
||||
}
|
||||
|
||||
|
||||
leftDrive.setPower(0);
|
||||
rightDrive.setPower(0);
|
||||
backrightDrive.setPower(0);
|
||||
backleftDrive.setPower(0);
|
||||
|
||||
|
||||
// Turn off RUN_TO_POSITION
|
||||
leftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
rightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
backleftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
backrightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
|
||||
sleep(250); // optional pause after each move.
|
||||
}
|
||||
}
|
||||
|
||||
public void armEncoder(double speed,
|
||||
double Inches, double timeoutS) {
|
||||
int newarmTarget;
|
||||
|
||||
|
||||
if (opModeIsActive()) {
|
||||
|
||||
// Determine new target position, and pass to motor controller
|
||||
newarmTarget = arm.getCurrentPosition() + (int) (Inches * COUNTS_PER_ARM_INCH);
|
||||
arm.setTargetPosition(newarmTarget);
|
||||
|
||||
// Turn On RUN_TO_POSITION
|
||||
arm.setMode(DcMotor.RunMode.RUN_TO_POSITION);
|
||||
|
||||
// reset the timeout time and start motion.
|
||||
runtime.reset();
|
||||
arm.setPower(Math.abs(speed));
|
||||
|
||||
// keep looping while we are still active, and there is time left, and both motors are running.
|
||||
// Note: We use (isBusy() && isBusy()) in the loop test, which means that when EITHER motor hits
|
||||
// its target position, the motion will stop. This is "safer" in the event that the robot will
|
||||
// always end the motion as soon as possible.
|
||||
// However, if you require that BOTH motors have finished their moves before the robot continues
|
||||
// onto the next step, use (isBusy() || isBusy()) in the loop test.
|
||||
while (opModeIsActive() &&
|
||||
(runtime.seconds() < timeoutS) &&
|
||||
(arm.isBusy())) {
|
||||
|
||||
// Display it for the driver.
|
||||
telemetry.addData("Running to", " %7d", newarmTarget);
|
||||
telemetry.addData("Currently at", " at %7d",
|
||||
arm.getCurrentPosition());
|
||||
telemetry.update();
|
||||
}
|
||||
|
||||
|
||||
arm.setPower(0);
|
||||
|
||||
|
||||
// Turn off RUN_TO_POSITION
|
||||
arm.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
|
||||
}
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user