48 Commits

Author SHA1 Message Date
2133941dbe Commit 2024-11-12 16:05:10 -08:00
66a831fa59 Added Hoverstate 2024-11-07 16:23:47 -08:00
3f8f6a41f0 Merge remote-tracking branch 'origin/branch-rc-chassis-14493-subsystem' into branch-rc-chassis-14493-subsystem
# Conflicts:
#	TeamCode/src/main/java/org/firstinspires/ftc/teamcode/DevTeleop.java
2024-11-07 15:54:28 -08:00
8d5be574c5 Updated robot speed to 55%. Made High basket go higher 2024-11-07 15:53:15 -08:00
e5a429c6ae Changing arm controls to be more intuitive 2024-11-07 15:38:33 -08:00
7a42724b44 Merge remote-tracking branch 'origin/branch-rc-chassis-14493-subsystem' into branch-rc-chassis-14493-subsystem
# Conflicts:
#	TeamCode/src/main/java/org/firstinspires/ftc/teamcode/configs/RobotConstants.java
2024-11-05 17:21:31 -08:00
2c1f0d6c57 Commit "working" code? 2024-11-05 17:20:43 -08:00
a55d1902d2 Asher's path code 2024-11-05 17:06:47 -08:00
6fe6eab830 Merge remote-tracking branch 'origin/branch-rc-chassis-14493-subsystem' into branch-rc-chassis-14493-subsystem 2024-11-05 16:40:55 -08:00
2a06f7e98d Added basic states for motor 2024-11-05 16:40:46 -08:00
83da8e0de0 Open close of the gripper from "X" to "right_bumper" 2024-11-05 16:39:42 -08:00
5c84d0d7c8 Updated High basket code. Made High basket go higher 2024-11-05 16:34:26 -08:00
5c657ab926 Updated arm code. Need to make high basket code goa little higher 2024-11-05 16:04:50 -08:00
a2fa3341b1 Merge remote-tracking branch 'origin/branch-rc-chassis-14493-subsystem' into branch-rc-chassis-14493-subsystem 2024-11-05 15:26:42 -08:00
9b2a04013f Updated untested arm code includes: high bucket score and moved low bucket score and high bucket score to gamepad 2 2024-11-04 20:11:28 -08:00
19fcec1fcc Move to tests package 2024-11-04 11:05:01 -08:00
edf0ec572a Commit with states 2024-11-03 21:36:07 -08:00
04b61d7aa7 Resolve name clash 2024-11-03 18:08:52 -08:00
0990edb038 Added motors subsystem plus 2 sample DevOps files 2024-11-03 15:11:23 -08:00
417847a6b3 Using local methods 2024-11-03 14:20:39 -08:00
4351eb9720 Re-integrate LSS and updated constants 2024-11-03 14:17:04 -08:00
0f42160c4f We scored one point! 2024-11-03 12:08:14 -08:00
d979bd5bb2 Merge remote-tracking branch 'origin/branch-rc-chassis-14493-subsystem' into branch-rc-chassis-14493-subsystem 2024-11-03 11:38:21 -08:00
b35cefe917 Add back Lift Raw subsystem 2024-11-03 11:38:01 -08:00
a606811969 Merge remote-tracking branch 'origin/branch-rc-chassis-14493-subsystem' into branch-rc-chassis-14493-subsystem 2024-11-03 11:19:34 -08:00
39094d531e Added working lift subsystem 2024-11-03 11:18:50 -08:00
e8eff6367d Working Arm Code 2024-11-03 10:24:10 -08:00
1c922f025e Fine tuning of Teleop class (untested) 2024-10-31 11:03:00 -07:00
3aed4b8676 Scaffolding of Autonomous class 2024-10-30 22:44:19 -07:00
b85f3b38df Clean up of comments and unused imports 2024-10-30 22:43:57 -07:00
d985378ac4 Fixed misspelling 2024-10-30 22:43:16 -07:00
78eb1cdfd2 Added / Updated constants to be used by subsystems 2024-10-30 21:32:07 -07:00
600e63a52b Added new Wrist subsystem and example test file 2024-10-30 21:31:52 -07:00
8e99d1672e Added arm positioning override and new state, BUCKET 2024-10-30 21:31:17 -07:00
e8d316baee Moving files to different package 2024-10-30 21:30:41 -07:00
b5c6e03ef3 Implemented Arm Subsytem wholeheartedly 2024-10-30 20:36:38 -07:00
284263a43b Working tests and reverting basic omni back to default 2024-10-30 12:12:56 -07:00
eb0042a5f6 Subsystem work-in-progress 2024-10-30 08:24:40 -07:00
657ec8e624 Aditya's sample code - validated to work with 3 specimen plus parking plus 2 penalties 2024-10-29 17:06:35 -07:00
c207070b1c Aditya's sample code - validated to work (2 specimen score out of 3) 2024-10-29 15:46:50 -07:00
173f934a22 Fine tuninng the constant and added more robust examples 2024-10-29 11:51:49 -07:00
28d7521ab0 Updated values for heading 2024-10-24 16:56:05 -07:00
a122832e76 Merge remote-tracking branch 'origin/branch-rc-chassis-14493' into branch-rc-chassis-14493 2024-10-24 16:55:33 -07:00
1f7b3467c1 Merge remote-tracking branch 'origin/branch-rc-chassis-14493' into branch-rc-chassis-14493 2024-10-24 16:54:09 -07:00
f7aa0c4319 Asher's path code 2024-10-24 16:53:22 -07:00
308f301bd5 Alex's initial path code 2024-10-24 16:49:40 -07:00
d383e2ca63 Merge remote-tracking branch 'origin/branch-rc-chassis-14493' into branch-rc-chassis-14493
# Conflicts:
#	TeamCode/src/main/java/org/firstinspires/ftc/teamcode/pedroPathing/tuning/FollowerConstants.java
2024-10-24 16:09:06 -07:00
a3f1dfdf68 Updated values for heading 2024-10-24 16:07:32 -07:00
47 changed files with 3667 additions and 178 deletions

View File

@ -26,15 +26,15 @@ import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
* @version 1.0, 3/12/2024
*/
@Config
@Autonomous(name = "AutoExampleTwo", group = "Autonomous Pathing Tuning")
public class AutoExampleTwo extends OpMode {
@Autonomous(name = "AsherOrientBlue", group = "Autonomous Pathing Tuning")
public class AsherOrientBlue extends OpMode {
private Telemetry telemetryA;
private Follower follower;
private PathChain path;
private final Pose startPose = new Pose(10.0, 40, 90);
private final Pose startPose = new Pose(9.757, 84.983, 90);
/**
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
@ -49,30 +49,28 @@ public class AutoExampleTwo extends OpMode {
follower.setStartingPose(startPose);
path = follower.pathBuilder()
/*
* Only update this path
*/
.addPath(
// Line 1
new BezierLine(
new Point(10.000, 40.000, Point.CARTESIAN),
new Point(60.000, 40.000, Point.CARTESIAN)
new Point(20.500, 7.800, Point.CARTESIAN),
new Point(20.500, 87.500, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 2
new BezierLine(
new Point(60.000, 40.000, Point.CARTESIAN),
new Point(60.000, 25.000, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 3
new BezierLine(
new Point(60.000, 25.000, Point.CARTESIAN),
new Point(10.000, 25.000, Point.CARTESIAN)
new Point(20.500, 87.500, Point.CARTESIAN),
new Point(7.800, 87.500, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90)).build();
/*
* End of only update this path
*/
follower.followPath(path);

View File

@ -0,0 +1,133 @@
package org.firstinspires.ftc.teamcode;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.config.Config;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
/**
* This is the Circle autonomous OpMode. It runs the robot in a PathChain that's actually not quite
* a circle, but some Bezier curves that have control points set essentially in a square. However,
* it turns enough to tune your centripetal force correction and some of your heading. Some lag in
* heading is to be expected.
*
* @author Anyi Lin - 10158 Scott's Bots
* @author Aaron Yang - 10158 Scott's Bots
* @author Harrison Womack - 10158 Scott's Bots
* @version 1.0, 3/12/2024
*/
@Config
@Autonomous(name = "AsherPathBlueV1", group = "Autonomous Pathing Tuning")
public class AsherPathBlueV1 extends OpMode {
private Telemetry telemetryA;
private Follower follower;
private PathChain path;
private final Pose startPose = new Pose(9.757, 84.983, 90);
/**
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
* initializes the FTC Dashboard telemetry.
*/
@Override
public void init() {
follower = new Follower(hardwareMap);
follower.setMaxPower(.4);
follower.setStartingPose(startPose);
path = follower.pathBuilder()
/*
* Only update this path
*/
.addPath(
// Line 1
new BezierCurve(
new Point(7.800, 87.5, Point.CARTESIAN),
new Point(19.000, 116.000, Point.CARTESIAN),
new Point(93.000, 118.000, Point.CARTESIAN),
new Point(45.000, 115.000, Point.CARTESIAN)
)
)
.addPath(
// Line 2
new BezierLine(
new Point(45.000, 115.000, Point.CARTESIAN),
new Point(14.000, 126.000, Point.CARTESIAN)
)
)
.addPath(
// Line 3
new BezierCurve(
new Point(14.000, 126.000, Point.CARTESIAN),
new Point(43.000, 112.500, Point.CARTESIAN),
new Point(64.000, 92.000, Point.CARTESIAN),
new Point(77.000, 117.000, Point.CARTESIAN)
)
)
.addPath(
// Line 4
new BezierLine(
new Point(77.000, 117.000, Point.CARTESIAN),
new Point(20.000, 135.000, Point.CARTESIAN)
)
)
.addPath(
// Line 5
new BezierCurve(
new Point(20.000, 135.000, Point.CARTESIAN),
new Point(113.000, 95.000, Point.CARTESIAN),
new Point(69.000, 135.000, Point.CARTESIAN)
)
)
.addPath(
// Line 6
new BezierLine(
new Point(69.000, 135.000, Point.CARTESIAN),
new Point(20.500, 135.000, Point.CARTESIAN)
)
)
.addPath(
// Line 7
new BezierCurve(
new Point(20.500, 135.000, Point.CARTESIAN),
new Point(101.500, 95.500, Point.CARTESIAN),
new Point(72.500, 95.500, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90)).build();
/*
* End of only update this path
*/
follower.followPath(path);
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
telemetryA.update();
}
/**
* This runs the OpMode, updating the Follower as well as printing out the debug statements to
* the Telemetry, as well as the FTC Dashboard.
*/
@Override
public void loop() {
follower.update();
if (follower.atParametricEnd()) {
follower.followPath(path);
}
follower.telemetryDebug(telemetryA);
}
}

View File

@ -1,4 +0,0 @@
package org.firstinspires.ftc.teamcode;
public class BluenbAutov1 {
}

View File

@ -0,0 +1,35 @@
package org.firstinspires.ftc.teamcode;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.runmodes.Auto;
@Autonomous(name = "CometBot Auto", group = "Debug")
public class CometBotAuto extends OpMode {
public Auto auto;
@Override
public void init() {
auto = new Auto(hardwareMap, telemetry, new Follower(hardwareMap));
}
@Override
public void start() {
auto.start();
}
@Override
public void loop() {
auto.update();
telemetry.addData("Arm State", auto.arm.getState());
telemetry.addData("Arm Position", auto.arm.getPosition());
telemetry.addData("Claw State", auto.claw.getState());
telemetry.addData("Wrist State", auto.wrist.getState());
telemetry.addData("Wrist Position", auto.wrist.getPosition());
telemetry.update();
}
}

View File

@ -0,0 +1,31 @@
package org.firstinspires.ftc.teamcode;
import static org.firstinspires.ftc.teamcode.util.action.FieldConstants.blueBucketStartPose;
import com.qualcomm.robotcore.eventloop.opmode.Disabled;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.runmodes.Teleop;
@TeleOp(name="ComeBot Drive", group="Debug")
@Disabled
public class CometBotDrive extends OpMode {
private Teleop teleop;
@Override
public void init() {
teleop = new Teleop(hardwareMap,
telemetry,
new Follower(hardwareMap),
gamepad1);
teleop.start();
}
@Override
public void loop() {
teleop.update();
}
}

View File

@ -0,0 +1,97 @@
package org.firstinspires.ftc.teamcode;
import com.qualcomm.robotcore.eventloop.opmode.Disabled;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.hardware.Gamepad;
import org.firstinspires.ftc.teamcode.subsystem.ArmSubsystem;
import org.firstinspires.ftc.teamcode.subsystem.ClawSubsystem;
import org.firstinspires.ftc.teamcode.subsystem.LiftSubsystem;
import org.firstinspires.ftc.teamcode.subsystem.MotorsSubsystem;
import org.firstinspires.ftc.teamcode.subsystem.WristSubsystem;
@TeleOp(name = "Dev Teleop Remix", group = "Debug")
@Disabled
public class DevTeleOpRemix extends OpMode {
public ClawSubsystem claw;
public ArmSubsystem arm;
public WristSubsystem wrist;
public LiftSubsystem lift;
public MotorsSubsystem motors;
public Gamepad currentGamepad1;
public Gamepad previousGamepad1;
public Gamepad currentGamepad2;
public Gamepad previousGamepad2;
public double power = .6;
@Override
public void init() {
claw = new ClawSubsystem(hardwareMap, ClawSubsystem.ClawState.CLOSED);
arm = new ArmSubsystem(hardwareMap, ArmSubsystem.ArmState.PARK);
wrist = new WristSubsystem(hardwareMap, WristSubsystem.WristState.FLOOR);
lift = new LiftSubsystem(hardwareMap);
motors = new MotorsSubsystem(hardwareMap, telemetry, power);
claw.init();
arm.init();
wrist.init();
lift.init();
motors.init();
currentGamepad1 = new Gamepad();
previousGamepad1 = new Gamepad();
currentGamepad2 = new Gamepad();
previousGamepad2 = new Gamepad();
}
public void theDrop(ArmSubsystem arm, WristSubsystem wrist) {
if (currentGamepad1.a && !previousGamepad1.a) {
wrist.floorWrist();
arm.engageArm();
}
}
public void thePickup(ClawSubsystem claw) {
if (currentGamepad1.x && !previousGamepad1.x) {
claw.switchState();
}
}
public void theLift(ArmSubsystem arm, WristSubsystem wrist) {
if (currentGamepad1.b && !previousGamepad1.b) {
arm.parkArm();
wrist.bucketWrist();
}
}
public void theLowBucketScore(LiftSubsystem lift, WristSubsystem wrist, ArmSubsystem arm) {
if (currentGamepad1.y && !previousGamepad1.y) {
lift.toLowBucket();
wrist.bucketWrist();
}
}
@Override
public void loop() {
previousGamepad1.copy(currentGamepad1);
currentGamepad1.copy(gamepad1);
previousGamepad2.copy(currentGamepad2);
currentGamepad2.copy(gamepad2);
theDrop(arm, wrist);
thePickup(claw);
theLift(arm, wrist);
theLowBucketScore(lift, wrist, arm);
motors.calculateTrajectory(gamepad1);
}
}

View File

@ -0,0 +1,107 @@
package org.firstinspires.ftc.teamcode;
import com.qualcomm.robotcore.eventloop.opmode.Disabled;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.hardware.Gamepad;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.subsystem.ArmSubsystem;
import org.firstinspires.ftc.teamcode.subsystem.ClawSubsystem;
import org.firstinspires.ftc.teamcode.subsystem.LiftSubsystem;
import org.firstinspires.ftc.teamcode.subsystem.MotorsSubsystem;
import org.firstinspires.ftc.teamcode.subsystem.WristSubsystem;
@TeleOp(name = "Dev Teleop Remix Deux", group = "Debug")
@Disabled
public class DevTeleOpRemixDeux extends OpMode {
private Follower follower;
public ClawSubsystem claw;
public ArmSubsystem arm;
public WristSubsystem wrist;
public LiftSubsystem lift;
public MotorsSubsystem motors;
public Gamepad currentGamepad1;
public Gamepad previousGamepad1;
public Gamepad currentGamepad2;
public Gamepad previousGamepad2;
public double power = .6;
@Override
public void init() {
follower = new Follower(hardwareMap);
claw = new ClawSubsystem(hardwareMap, ClawSubsystem.ClawState.CLOSED);
arm = new ArmSubsystem(hardwareMap, ArmSubsystem.ArmState.PARK);
wrist = new WristSubsystem(hardwareMap, WristSubsystem.WristState.FLOOR);
motors = new MotorsSubsystem(hardwareMap, telemetry);
lift = new LiftSubsystem(hardwareMap);
claw.init();
arm.init();
wrist.init();
lift.init();
motors.init();
currentGamepad1 = new Gamepad();
previousGamepad1 = new Gamepad();
currentGamepad2 = new Gamepad();
previousGamepad2 = new Gamepad();
follower.setMaxPower(this.power);
follower.startTeleopDrive();
}
public void theDrop(ArmSubsystem arm, WristSubsystem wrist) {
if (currentGamepad1.a && !previousGamepad1.a) {
wrist.floorWrist();
arm.engageArm();
}
}
public void thePickup(ClawSubsystem claw) {
if (currentGamepad1.x && !previousGamepad1.x) {
claw.switchState();
}
}
public void theLift(ArmSubsystem arm, WristSubsystem wrist) {
if (currentGamepad1.b && !previousGamepad1.b) {
arm.parkArm();
wrist.bucketWrist();
}
}
public void theLowBucketScore(LiftSubsystem lift, WristSubsystem wrist, ArmSubsystem arm) {
if (currentGamepad1.y && !previousGamepad1.y) {
lift.toLowBucket();
wrist.bucketWrist();
}
}
@Override
public void loop() {
previousGamepad1.copy(currentGamepad1);
currentGamepad1.copy(gamepad1);
previousGamepad2.copy(currentGamepad2);
currentGamepad2.copy(gamepad2);
theDrop(arm, wrist);
thePickup(claw);
theLift(arm, wrist);
theLowBucketScore(lift, wrist, arm);
follower.setTeleOpMovementVectors(-gamepad1.left_stick_y, -gamepad1.left_stick_x, -gamepad1.right_stick_x);
follower.update();
}
}

View File

@ -0,0 +1,196 @@
package org.firstinspires.ftc.teamcode;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_ENCODER_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.LEFT_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.LEFT_ENCODER_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.RIGHT_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.RIGHT_ENCODER_DIRECTION;
import android.graphics.Point;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import com.qualcomm.robotcore.hardware.Gamepad;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Encoder;
import org.firstinspires.ftc.teamcode.subsystem.ArmSubsystem;
import org.firstinspires.ftc.teamcode.subsystem.ClawSubsystem;
import org.firstinspires.ftc.teamcode.subsystem.LiftSubsystem;
import org.firstinspires.ftc.teamcode.subsystem.WristSubsystem;
@TeleOp(name = "Dev Teleop", group = "Debug")
public class DevTeleop extends OpMode {
public ClawSubsystem claw;
public ArmSubsystem arm;
public WristSubsystem wrist;
public LiftSubsystem lift;
public Gamepad currentGamepad1;
public Gamepad previousGamepad1;
public Gamepad currentGamepad2;
public Gamepad previousGamepad2;
public DcMotor frontLeftMotor;
public DcMotor backLeftMotor;
public DcMotor frontRightMotor;
public DcMotor backRightMotor;
private double MAX_POWER = .45;
@Override
public void init() {
claw = new ClawSubsystem(hardwareMap, ClawSubsystem.ClawState.CLOSED);
arm = new ArmSubsystem(hardwareMap, ArmSubsystem.ArmState.PARK);
wrist = new WristSubsystem(hardwareMap, WristSubsystem.WristState.FLOOR);
lift = new LiftSubsystem(hardwareMap);
claw.init();
arm.init();
wrist.init();
lift.init();
frontLeftMotor = hardwareMap.get(DcMotor.class, FRONT_LEFT_MOTOR);
backLeftMotor = hardwareMap.get(DcMotor.class, BACK_LEFT_MOTOR);
frontRightMotor = hardwareMap.get(DcMotor.class, FRONT_RIGHT_MOTOR);
backRightMotor = hardwareMap.get(DcMotor.class, BACK_RIGHT_MOTOR);
frontLeftMotor.setDirection(FRONT_LEFT_MOTOR_DIRECTION);
backLeftMotor.setDirection(BACK_LEFT_MOTOR_DIRECTION);
frontRightMotor.setDirection(FRONT_RIGHT_MOTOR_DIRECTION);
backRightMotor.setDirection(BACK_RIGHT_MOTOR_DIRECTION);
currentGamepad1 = new Gamepad();
previousGamepad1 = new Gamepad();
currentGamepad2 = new Gamepad();
previousGamepad2 = new Gamepad();
}
public void theDrop(ArmSubsystem arm, WristSubsystem wrist) {
//pick up
if (currentGamepad2.dpad_down && !previousGamepad2.dpad_down) {
wrist.floorWrist();
arm.engageArm();
}
}
public void thePickup(ClawSubsystem claw) {
//claw open close
if (currentGamepad2.right_bumper && !previousGamepad2.right_bumper) {
claw.switchState();
}
}
/* public void theLift(ArmSubsystem arm, WristSubsystem wrist) {
if (currentGamepad1.b && !previousGamepad1.b) {
arm.parkArm();
wrist.bucketWrist();
}
}
*/
public void theLowBucketScore(LiftSubsystem lift, WristSubsystem wrist, ArmSubsystem arm) {
//low bucket
if (currentGamepad2.a && !previousGamepad2.a) {
lift.toLowBucket();
arm.bucketArm();
wrist.bucketWrist();
}
}
public void theHighBucketScore(LiftSubsystem lift, WristSubsystem wrist, ArmSubsystem arm) {
//high basket
if (currentGamepad2.b && !previousGamepad2.b) {
lift.toHighBucket();
arm.bucketArm();
wrist.bucketWrist();
}
}
public void theTravel(LiftSubsystem lift, ArmSubsystem arm, WristSubsystem wrist){
//
if (currentGamepad2.dpad_right && !previousGamepad2.dpad_right){
lift.toFloor();
arm.bucketArm();
wrist.floorWrist();
}
}
public void hoverState(ArmSubsystem arm, WristSubsystem wrist, LiftSubsystem lift){
if (currentGamepad1.dpad_left && !previousGamepad2.dpad_left){
lift.toHover();
wrist.floorWrist();
arm.engageArm();
}
}
@Override
public void loop() {
previousGamepad1.copy(currentGamepad1);
currentGamepad1.copy(gamepad1);
previousGamepad2.copy(currentGamepad2);
currentGamepad2.copy(gamepad2);
theDrop(arm, wrist);
thePickup(claw);
// theLift(arm, wrist);
theLowBucketScore(lift, wrist, arm);
theHighBucketScore(lift, wrist, arm);
theTravel(lift, arm, wrist);
double max;
// POV Mode uses left joystick to go forward & strafe, and right joystick to rotate.
double axial = -gamepad1.left_stick_y; // Note: pushing stick forward gives negative value
double lateral = gamepad1.left_stick_x;
double yaw = gamepad1.right_stick_x;
// Combine the joystick requests for each axis-motion to determine each wheel's power.
// Set up a variable for each drive wheel to save the power level for telemetry.
double leftFrontPower = axial + lateral + yaw;
double rightFrontPower = axial - lateral - yaw;
double leftBackPower = axial - lateral + yaw;
double rightBackPower = axial + lateral - yaw;
// Normalize the values so no wheel power exceeds 100%
// This ensures that the robot maintains the desired motion.
max = Math.max(Math.abs(leftFrontPower), Math.abs(rightFrontPower));
max = Math.max(max, Math.abs(leftBackPower));
max = Math.max(max, Math.abs(rightBackPower));
if (max > 1.0) {
leftFrontPower /= max;
rightFrontPower /= max;
leftBackPower /= max;
rightBackPower /= max;
}
// Send calculated power to wheels
frontLeftMotor.setPower(leftFrontPower * MAX_POWER);
frontRightMotor.setPower(rightFrontPower * MAX_POWER);
backLeftMotor.setPower(leftBackPower * MAX_POWER);
backRightMotor.setPower(rightBackPower * MAX_POWER);
// Show the elapsed game time and wheel power.
telemetry.addData("Front left/Right", "%4.2f, %4.2f", leftFrontPower, rightFrontPower);
telemetry.addData("Back left/Right", "%4.2f, %4.2f", leftBackPower, rightBackPower);
telemetry.addData("Current Lift Position", lift.getPosition());
telemetry.update();
}
}

View File

@ -10,8 +10,11 @@ public class PedroConstants {
/*
Robot parameters
*/
// Turn localizer - -0.003
// Robot motor configurations
public static final String BRAIN_ROT = "Sikidi rizz 360 no teleop tf2 mama mia 2cool 4skool yasyasy yasyasyasyasyasyasyaysy ohio yes heh me is moar skeebeedee than u walked and got tripped on by your aunt my very educaded mother just served us nine what? just kydinfoiwfowefwofwioefoiejfeoiwjfomdsklfnslefknesfklnkfenfenkfeknfenkfeknfenkefnk";
public static final String FRONT_LEFT_MOTOR = "Drive front lt";
public static final String BACK_LEFT_MOTOR = "Drive back lt";
public static final String FRONT_RIGHT_MOTOR = "Drive front rt";
@ -20,38 +23,51 @@ public class PedroConstants {
// Robot motor direction
public static final Direction FRONT_LEFT_MOTOR_DIRECTION = Direction.REVERSE;
public static final Direction BACK_LEFT_MOTOR_DIRECTION = Direction.REVERSE;
public static final Direction FRONT_RIGHT_MOTOR_DIRECTION = Direction.REVERSE;
public static final Direction BACK_RIGHT_MOTOR_DIRECTION = Direction.REVERSE;
public static final Direction FRONT_RIGHT_MOTOR_DIRECTION = Direction.FORWARD;
public static final Direction BACK_RIGHT_MOTOR_DIRECTION = Direction.FORWARD;
// Robot IMU configuration
public static final String IMU = "imu";
// Robot IMU placement
public static final RevHubOrientationOnRobot.LogoFacingDirection IMU_LOGO_FACING_DIRECTION
= RevHubOrientationOnRobot.LogoFacingDirection.DOWN;
public static final RevHubOrientationOnRobot.UsbFacingDirection IMU_USB_FACING_DIRECTION
= RevHubOrientationOnRobot.UsbFacingDirection.LEFT;
// Robot encoders
public static final String LEFT_ENCODER = "encoder left";
public static final String RIGHT_ENCODER = "encoder right";
public static final String BACK_ENCODER = "encoder back";
// Robot encoder direction
public static final double FRONT_LEFT_MOTOR_ENCODER = Encoder.FORWARD;
public static final double BACK_LEFT_MOTOR_ENCODER = Encoder.FORWARD;
public static final double FRONT_RIGHT_MOTOR_ENCODER = Encoder.FORWARD;
public static final double BACK_RIGHT_MOTOR_ENCODER = Encoder.FORWARD;
public static final double LEFT_ENCODER_DIRECTION = Encoder.FORWARD;
public static final double RIGHT_ENCODER_DIRECTION = Encoder.FORWARD;
public static final double BACK_ENCODER_DIRECTION = Encoder.FORWARD;
/*
Pedro's parameters
*/
// The weight of the robot in Kilograms
public static final double ROBOT_WEIGHT_IN_KG = 5.15;
public static final double ROBOT_WEIGHT_IN_KG = 10.5;
// Maximum velocity of the robot going forward
public static final double ROBOT_SPEED_FORWARD = 66.6117;
public static final double ROBOT_SPEED_FORWARD = 51.4598;
// Maximum velocity of the robot going right
public static final double ROBOT_SPEED_LATERAL = 60.0671;
public static final double ROBOT_SPEED_LATERAL = 28.7119;
// Rate of deceleration when power is cut-off when the robot is moving forward
public static final double FORWARD_ZERO_POWER_ACCEL = -71.154;
public static final double FORWARD_ZERO_POWER_ACCEL = -59.805;
// Rate of deceleration when power is cut-off when the robot is moving to the right
public static final double LATERAL_ZERO_POWER_ACCEL = -109.5358;
public static final double LATERAL_ZERO_POWER_ACCEL = -99.672;
// Determines how fast your robot will decelerate as a factor of how fast your robot will coast to a stop
public static final double ZERO_POWER_ACCEL_MULT = 4.0;
public static final double ZERO_POWER_ACCEL_MULT = 3.5;
/* Centripetal force correction - increase if robot is correcting into the path
- decrease if robot is correcting away from the path */
public static final double CENTRIPETAL_SCALING = 0.0005;
public static final double CENTRIPETAL_SCALING = 0.0004;
}

View File

@ -0,0 +1,135 @@
package org.firstinspires.ftc.teamcode.cometbots;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.config.Config;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
/**
* This is the Circle autonomous OpMode. It runs the robot in a PathChain that's actually not quite
* a circle, but some Bezier curves that have control points set essentially in a square. However,
* it turns enough to tune your centripetal force correction and some of your heading. Some lag in
* heading is to be expected.
*
* @author Anyi Lin - 10158 Scott's Bots
* @author Aaron Yang - 10158 Scott's Bots
* @author Harrison Womack - 10158 Scott's Bots
* @version 1.0, 3/12/2024
*/
@Config
@Autonomous(name = "AsherPathV1", group = "Autonomous Pathing Tuning")
public class AsherPathV1 extends OpMode {
private Telemetry telemetryA;
private Follower follower;
private PathChain path;
private final Pose startPose = new Pose(10.0, 40, 90);
/**
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
* initializes the FTC Dashboard telemetry.
*/
@Override
public void init() {
follower = new Follower(hardwareMap);
follower.setMaxPower(.4);
follower.setStartingPose(startPose);
path = follower.pathBuilder()
/*
* Only update this path
*/
.addPath(
// Line 1
new BezierCurve(
new Point(9.757, 84.983, Point.CARTESIAN),
new Point(33.000, 105.000, Point.CARTESIAN),
new Point(80.000, 118.000, Point.CARTESIAN),
new Point(55.000, 120.000, Point.CARTESIAN)
)
)
.addPath(
// Line 2
new BezierCurve(
new Point(55.000, 120.000, Point.CARTESIAN),
new Point(22.000, 106.000, Point.CARTESIAN),
new Point(11.000, 131.000, Point.CARTESIAN)
)
)
.addPath(
// Line 3
new BezierCurve(
new Point(11.000, 131.000, Point.CARTESIAN),
new Point(75.000, 95.000, Point.CARTESIAN),
new Point(112.000, 132.000, Point.CARTESIAN),
new Point(61.000, 131.000, Point.CARTESIAN)
)
)
.addPath(
// Line 4
new BezierLine(
new Point(61.000, 131.000, Point.CARTESIAN),
new Point(11.000, 131.000, Point.CARTESIAN)
)
)
.addPath(
// Line 5
new BezierCurve(
new Point(11.000, 131.000, Point.CARTESIAN),
new Point(100.000, 118.000, Point.CARTESIAN),
new Point(103.000, 135.000, Point.CARTESIAN),
new Point(61.000, 135.000, Point.CARTESIAN)
)
)
.addPath(
// Line 6
new BezierLine(
new Point(61.000, 135.000, Point.CARTESIAN),
new Point(11.000, 131.000, Point.CARTESIAN)
)
)
.addPath(
// Line 7
new BezierCurve(
new Point(11.000, 131.000, Point.CARTESIAN),
new Point(113.000, 95.000, Point.CARTESIAN),
new Point(67.000, 95.000, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90)).build();
/*
* End of only update this path
*/
follower.followPath(path);
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
telemetryA.update();
}
/**
* This runs the OpMode, updating the Follower as well as printing out the debug statements to
* the Telemetry, as well as the FTC Dashboard.
*/
@Override
public void loop() {
follower.update();
if (follower.atParametricEnd()) {
follower.followPath(path);
}
follower.telemetryDebug(telemetryA);
}
}

View File

@ -0,0 +1,79 @@
package org.firstinspires.ftc.teamcode.cometbots;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.config.Config;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
/**
* This is the Circle autonomous OpMode. It runs the robot in a PathChain that's actually not quite
* a circle, but some Bezier curves that have control points set essentially in a square. However,
* it turns enough to tune your centripetal force correction and some of your heading. Some lag in
* heading is to be expected.
*
* @author Anyi Lin - 10158 Scott's Bots
* @author Aaron Yang - 10158 Scott's Bots
* @author Harrison Womack - 10158 Scott's Bots
* @version 1.0, 3/12/2024
*/
@Config
@Autonomous(name = "AutoExample - Straight Path", group = "Autonomous Pathing Tuning")
public class AutoExample extends OpMode {
private Telemetry telemetryA;
private Follower follower;
private PathChain path;
private final Pose startPose = new Pose(0.0, 20.0, 0);
/**
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
* initializes the FTC Dashboard telemetry.
*/
@Override
public void init() {
follower = new Follower(hardwareMap);
follower.setMaxPower(.6);
follower.setStartingPose(startPose);
path = follower.pathBuilder()
.addPath(
// Line 1
new BezierLine(
new Point(0.000, 20.000, Point.CARTESIAN),
new Point(50.000, 20.000, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.build();
follower.followPath(path);
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
telemetryA.update();
}
/**
* This runs the OpMode, updating the Follower as well as printing out the debug statements to
* the Telemetry, as well as the FTC Dashboard.
*/
@Override
public void loop() {
follower.update();
if (follower.atParametricEnd()) {
follower.followPath(path);
}
follower.telemetryDebug(telemetryA);
}
}

View File

@ -1,17 +1,10 @@
package org.firstinspires.ftc.teamcode;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR;
package org.firstinspires.ftc.teamcode.cometbots;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.config.Config;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
@ -33,15 +26,15 @@ import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
* @version 1.0, 3/12/2024
*/
@Config
@Autonomous(name = "AutoExample", group = "Autonomous Pathing Tuning")
public class AutoExample extends OpMode {
@Autonomous(name = "AutoExample - 2 Curves/2 Lines", group = "Autonomous Pathing Tuning")
public class AutoExampleFour extends OpMode {
private Telemetry telemetryA;
private Follower follower;
private PathChain path;
private final Pose startPose = new Pose(12.0, 11, 90);
private final Pose startPose = new Pose(12,60, 0);
/**
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
@ -51,54 +44,45 @@ public class AutoExample extends OpMode {
public void init() {
follower = new Follower(hardwareMap);
follower.setMaxPower(.6);
follower.setMaxPower(.45);
follower.setStartingPose(startPose);
path = follower.pathBuilder()
.addPath(
// Line 1
new BezierLine(
new Point(12.804, 11.223, Point.CARTESIAN),
new Point(12.804, 42.362, Point.CARTESIAN)
new BezierCurve(
new Point(12.000, 60.000, Point.CARTESIAN),
new Point(60.000, 60.000, Point.CARTESIAN),
new Point(60.000, 12.000, Point.CARTESIAN)
)
)
.setTangentHeadingInterpolation()
.setLinearHeadingInterpolation(Math.toRadians(0), Math.toRadians(-90))
.addPath(
// Line 2
new BezierCurve(
new Point(12.804, 42.362, Point.CARTESIAN),
new Point(11.381, 57.379, Point.CARTESIAN),
new Point(31.614, 56.588, Point.CARTESIAN)
new BezierLine(
new Point(60.000, 12.000, Point.CARTESIAN),
new Point(40.000, 12.000, Point.CARTESIAN)
)
)
.setTangentHeadingInterpolation()
.setLinearHeadingInterpolation(Math.toRadians(-90), Math.toRadians(-90))
.addPath(
// Line 3
new BezierLine(
new Point(31.614, 56.588, Point.CARTESIAN),
new Point(51.214, 56.746, Point.CARTESIAN)
new BezierCurve(
new Point(40.000, 12.000, Point.CARTESIAN),
new Point(35.000, 35.000, Point.CARTESIAN),
new Point(12.000, 35.000, Point.CARTESIAN)
)
)
.setTangentHeadingInterpolation()
.setLinearHeadingInterpolation(Math.toRadians(-90), Math.toRadians(-90))
.addPath(
// Line 4
new BezierCurve(
new Point(51.214, 56.746, Point.CARTESIAN),
new Point(64.334, 58.643, Point.CARTESIAN),
new Point(61.172, 45.524, Point.CARTESIAN)
new BezierLine(
new Point(12.000, 35.000, Point.CARTESIAN),
new Point(12.000, 60.000, Point.CARTESIAN)
)
)
.setTangentHeadingInterpolation()
.addPath(
// Line 5
new BezierCurve(
new Point(61.172, 45.524, Point.CARTESIAN),
new Point(36.198, 26.239, Point.CARTESIAN),
new Point(19.759, 11.065, Point.CARTESIAN)
)
)
.setTangentHeadingInterpolation()
.setLinearHeadingInterpolation(Math.toRadians(-90), Math.toRadians(0))
.build();
follower.followPath(path);

View File

@ -1,4 +1,4 @@
package org.firstinspires.ftc.teamcode;
package org.firstinspires.ftc.teamcode.cometbots;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.config.Config;

View File

@ -1,4 +1,4 @@
package org.firstinspires.ftc.teamcode;
package org.firstinspires.ftc.teamcode.cometbots;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.config.Config;
@ -26,7 +26,7 @@ import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
* @version 1.0, 3/12/2024
*/
@Config
@Autonomous(name = "AutoExampleThree", group = "Autonomous Pathing Tuning")
@Autonomous(name = "AutoExample - Curve and Line", group = "Autonomous Pathing Tuning")
public class AutoExampleThree extends OpMode {
private Telemetry telemetryA;
@ -34,7 +34,7 @@ public class AutoExampleThree extends OpMode {
private PathChain path;
private final Pose startPose = new Pose(10.0, 40, 90);
private final Pose startPose = new Pose(10,45, 0);
/**
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
@ -52,12 +52,21 @@ public class AutoExampleThree extends OpMode {
.addPath(
// Line 1
new BezierCurve(
new Point(10.000, 20.000, Point.CARTESIAN),
new Point(29.089, 61.232, Point.CARTESIAN),
new Point(48.054, 19.607, Point.CARTESIAN)
new Point(10.000, 45.000, Point.CARTESIAN),
new Point(45.000, 45.000, Point.CARTESIAN),
new Point(50.000, 20.000, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90)).build();
.setLinearHeadingInterpolation(Math.toRadians(0), Math.toRadians(-90))
.addPath(
// Line 2
new BezierLine(
new Point(50.000, 20.000, Point.CARTESIAN),
new Point(10.000, 20.000, Point.CARTESIAN)
)
)
.setLinearHeadingInterpolation(Math.toRadians(-90), Math.toRadians(-90))
.build();
follower.followPath(path);

View File

@ -0,0 +1,80 @@
package org.firstinspires.ftc.teamcode.cometbots;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.config.Config;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
/**
* This is the Circle autonomous OpMode. It runs the robot in a PathChain that's actually not quite
* a circle, but some Bezier curves that have control points set essentially in a square. However,
* it turns enough to tune your centripetal force correction and some of your heading. Some lag in
* heading is to be expected.
*
* @author Anyi Lin - 10158 Scott's Bots
* @author Aaron Yang - 10158 Scott's Bots
* @author Harrison Womack - 10158 Scott's Bots
* @version 1.0, 3/12/2024
*/
@Config
@Autonomous(name = "AutoExample - Simple Curve", group = "Autonomous Pathing Tuning")
public class AutoExampleTwo extends OpMode {
private Telemetry telemetryA;
private Follower follower;
private PathChain path;
private final Pose startPose = new Pose(10.0, 45, 0);
/**
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
* initializes the FTC Dashboard telemetry.
*/
@Override
public void init() {
follower = new Follower(hardwareMap);
follower.setMaxPower(.4);
follower.setStartingPose(startPose);
path = follower.pathBuilder()
.addPath(
// Line 1
new BezierCurve(
new Point(10.000, 45.000, Point.CARTESIAN),
new Point(45.000, 45.000, Point.CARTESIAN),
new Point(50.000, 20.000, Point.CARTESIAN)
)
)
.setLinearHeadingInterpolation(Math.toRadians(0), Math.toRadians(-90))
.build();
follower.followPath(path);
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
telemetryA.update();
}
/**
* This runs the OpMode, updating the Follower as well as printing out the debug statements to
* the Telemetry, as well as the FTC Dashboard.
*/
@Override
public void loop() {
follower.update();
if (follower.atParametricEnd()) {
follower.followPath(path);
}
follower.telemetryDebug(telemetryA);
}
}

View File

@ -27,8 +27,10 @@
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.firstinspires.ftc.teamcode;
package org.firstinspires.ftc.teamcode.cometbots;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_ENCODER_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR;
@ -37,6 +39,10 @@ import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.LEFT_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.LEFT_ENCODER_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.RIGHT_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.RIGHT_ENCODER_DIRECTION;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
@ -74,15 +80,12 @@ import org.firstinspires.ftc.teamcode.pedroPathing.localization.Encoder;
* Remove or comment out the @Disabled line to add this OpMode to the Driver Station OpMode list
*/
@TeleOp(name = "Basic: Omni Linear OpMode", group = "Linear OpMode")
@TeleOp(name="Basic: Omni Linear OpMode", group="Linear OpMode")
public class BasicOmniOpMode_Linear extends LinearOpMode {
// Declare OpMode members for each of the 4 motors.
private final ElapsedTime runtime = new ElapsedTime();
private Encoder leftFront;
private Encoder rightFront;
private Encoder leftRear;
private Encoder rightRear;
@Override
public void runOpMode() {
@ -93,12 +96,18 @@ public class BasicOmniOpMode_Linear extends LinearOpMode {
DcMotor rightFrontDrive = hardwareMap.get(DcMotor.class, FRONT_RIGHT_MOTOR);
DcMotor rightBackDrive = hardwareMap.get(DcMotor.class, BACK_RIGHT_MOTOR);
leftFront = new Encoder(hardwareMap.get(DcMotorEx.class, FRONT_LEFT_MOTOR));
leftRear = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_LEFT_MOTOR));
rightRear = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_RIGHT_MOTOR));
rightFront = new Encoder(hardwareMap.get(DcMotorEx.class, FRONT_RIGHT_MOTOR));
// TODO: replace these with your encoder ports
Encoder leftEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, LEFT_ENCODER));
Encoder rightEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, RIGHT_ENCODER));
Encoder strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_ENCODER));
// TODO: reverse any encoders necessary
leftEncoder.setDirection(LEFT_ENCODER_DIRECTION);
rightEncoder.setDirection(RIGHT_ENCODER_DIRECTION);
strafeEncoder.setDirection(BACK_ENCODER_DIRECTION);
// ########################################################################################
// !!! IMPORTANT Drive Information. Test your motor directions. !!!!!
// ########################################################################################
@ -114,20 +123,11 @@ public class BasicOmniOpMode_Linear extends LinearOpMode {
rightFrontDrive.setDirection(FRONT_RIGHT_MOTOR_DIRECTION);
rightBackDrive.setDirection(BACK_RIGHT_MOTOR_DIRECTION);
leftFrontDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
leftBackDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
rightFrontDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
rightBackDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
leftFrontDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
leftBackDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
rightFrontDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
rightBackDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
// Wait for the game to start (driver presses START)
telemetry.addData("Status", "Initialized");
telemetry.addData("Left Encoder Value", leftEncoder.getDeltaPosition());
telemetry.addData("Right Encoder Value", rightEncoder.getDeltaPosition());
telemetry.addData("Strafe Encoder Value", strafeEncoder.getDeltaPosition());
telemetry.update();
waitForStart();
@ -138,16 +138,16 @@ public class BasicOmniOpMode_Linear extends LinearOpMode {
double max;
// POV Mode uses left joystick to go forward & strafe, and right joystick to rotate.
double axial = -gamepad1.left_stick_y; // Note: pushing stick forward gives negative value
double lateral = gamepad1.left_stick_x;
double yaw = gamepad1.right_stick_x;
double axial = -gamepad1.left_stick_y; // Note: pushing stick forward gives negative value
double lateral = gamepad1.left_stick_x;
double yaw = gamepad1.right_stick_x;
// Combine the joystick requests for each axis-motion to determine each wheel's power.
// Set up a variable for each drive wheel to save the power level for telemetry.
double leftFrontPower = axial + lateral + yaw;
double leftFrontPower = axial + lateral + yaw;
double rightFrontPower = axial - lateral - yaw;
double leftBackPower = axial - lateral + yaw;
double rightBackPower = axial + lateral - yaw;
double leftBackPower = axial - lateral + yaw;
double rightBackPower = axial + lateral - yaw;
// Normalize the values so no wheel power exceeds 100%
// This ensures that the robot maintains the desired motion.
@ -156,10 +156,10 @@ public class BasicOmniOpMode_Linear extends LinearOpMode {
max = Math.max(max, Math.abs(rightBackPower));
if (max > 1.0) {
leftFrontPower /= max;
leftFrontPower /= max;
rightFrontPower /= max;
leftBackPower /= max;
rightBackPower /= max;
leftBackPower /= max;
rightBackPower /= max;
}
// This is test code:
@ -186,14 +186,12 @@ public class BasicOmniOpMode_Linear extends LinearOpMode {
rightBackDrive.setPower(rightBackPower);
// Show the elapsed game time and wheel power.
telemetry.addData("Status", "Run Time: " + runtime);
telemetry.addData("Status", "Run Time: " + runtime.toString());
telemetry.addData("Front left/Right", "%4.2f, %4.2f", leftFrontPower, rightFrontPower);
telemetry.addData("Back left/Right", "%4.2f, %4.2f", leftBackPower, rightBackPower);
telemetry.addData("Encoder Front Left", leftFrontDrive.getDirection() + " : " + leftFrontDrive.getCurrentPosition());
telemetry.addData("Encoder Front Right", rightFrontDrive.getCurrentPosition());
telemetry.addData("Encoder Back Left", leftBackDrive.getCurrentPosition());
telemetry.addData("Encoder Back Right", rightBackDrive.getCurrentPosition());
telemetry.addData("Left Encoder Value", leftEncoder.getDeltaPosition());
telemetry.addData("Right Encoder Value", rightEncoder.getDeltaPosition());
telemetry.addData("Strafe Encoder Value", strafeEncoder.getDeltaPosition());
telemetry.update();
}
}
}
}}

View File

@ -0,0 +1,161 @@
package org.firstinspires.ftc.teamcode.cometbots;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.config.Config;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
/**
* This is the Circle autonomous OpMode. It runs the robot in a PathChain that's actually not quite
* a circle, but some Bezier curves that have control points set essentially in a square. However,
* it turns enough to tune your centripetal force correction and some of your heading. Some lag in
* heading is to be expected.
*
* @author Anyi Lin - 10158 Scott's Bots
* @author Aaron Yang - 10158 Scott's Bots
* @author Harrison Womack - 10158 Scott's Bots
* @version 1.0, 3/12/2024
*/
@Config
@Autonomous(name = "BlueBasketAuto", group = "Autonomous Pathing Tuning")
public class BlueBasketAuto extends OpMode {
private Telemetry telemetryA;
private Follower follower;
private PathChain path;
private final Pose startPose = new Pose(11.25, 95.75);
/**
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
* initializes the FTC Dashboard telemetry.
*/
@Override
public void init() {
follower = new Follower(hardwareMap);
follower.setMaxPower(.45);
follower.setStartingPose(startPose);
path = follower.pathBuilder()
.addPath(
// Line 1
new BezierLine(
new Point(11.250, 95.750, Point.CARTESIAN),
new Point(37.000, 108.000, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 2
new BezierCurve(
new Point(37.000, 108.000, Point.CARTESIAN),
new Point(73.286, 111.536, Point.CARTESIAN),
new Point(67.821, 120.536, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 3
new BezierLine(
new Point(67.821, 120.536, Point.CARTESIAN),
new Point(28.000, 121.500, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 4
new BezierLine(
new Point(28.000, 121.500, Point.CARTESIAN),
new Point(18.000, 130.179, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 5
new BezierCurve(
new Point(18.000, 130.179, Point.CARTESIAN),
new Point(59.000, 102.500, Point.CARTESIAN),
new Point(68.700, 130.500, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 6
new BezierLine(
new Point(68.700, 130.500, Point.CARTESIAN),
new Point(18.000, 130.339, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 7
new BezierCurve(
new Point(18.000, 130.339, Point.CARTESIAN),
new Point(49.018, 121.179, Point.CARTESIAN),
new Point(63.804, 135.321, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 8
new BezierLine(
new Point(63.804, 135.321, Point.CARTESIAN),
new Point(53.036, 135.161, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 9
new BezierLine(
new Point(53.036, 135.161, Point.CARTESIAN),
new Point(18.643, 135.000, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 10
new BezierLine(
new Point(18.643, 135.000, Point.CARTESIAN),
new Point(72.300, 97.400, Point.CARTESIAN)
)
)
.addPath(
// Line 9
new BezierLine(
new Point(18.643, 135.000, Point.CARTESIAN),
new Point(83.250, 95.464, Point.CARTESIAN)
)
)
.setLinearHeadingInterpolation(Math.toRadians(0), Math.toRadians(270)).build();
follower.followPath(path);
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
telemetryA.update();
}
/**
* This runs the OpMode, updating the Follower as well as printing out the debug statements to
* the Telemetry, as well as the FTC Dashboard.
*/
@Override
public void loop() {
follower.update();
if (follower.atParametricEnd()) {
follower.followPath(path);
}
follower.telemetryDebug(telemetryA);
}
}

View File

@ -1,4 +1,4 @@
package org.firstinspires.ftc.teamcode;
package org.firstinspires.ftc.teamcode.cometbots;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.config.Config;
@ -9,7 +9,6 @@ import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;

View File

@ -0,0 +1,4 @@
package org.firstinspires.ftc.teamcode.cometbots;
public class BluenbAutov1 {
}

View File

@ -0,0 +1,172 @@
/* Copyright (c) 2022 FIRST. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided that
* the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.firstinspires.ftc.teamcode.cometbots;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_ENCODER_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.IMU_LOGO_FACING_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.IMU_USB_FACING_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.LEFT_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.LEFT_ENCODER_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.RIGHT_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.RIGHT_ENCODER_DIRECTION;
import com.qualcomm.hardware.rev.RevHubOrientationOnRobot;
import com.qualcomm.robotcore.eventloop.opmode.Disabled;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import com.qualcomm.robotcore.hardware.IMU;
import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
import org.firstinspires.ftc.robotcore.external.navigation.AngularVelocity;
import org.firstinspires.ftc.robotcore.external.navigation.YawPitchRollAngles;
import org.firstinspires.ftc.teamcode.PedroConstants;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Encoder;
/*
* This OpMode shows how to use the new universal IMU interface. This
* interface may be used with the BNO055 IMU or the BHI260 IMU. It assumes that an IMU is configured
* on the robot with the name "imu".
*
* The sample will display the current Yaw, Pitch and Roll of the robot.<br>
* With the correct orientation parameters selected, pitch/roll/yaw should act as follows:
* Pitch value should INCREASE as the robot is tipped UP at the front. (Rotation about X) <br>
* Roll value should INCREASE as the robot is tipped UP at the left side. (Rotation about Y) <br>
* Yaw value should INCREASE as the robot is rotated Counter Clockwise. (Rotation about Z) <br>
*
* The yaw can be reset (to zero) by pressing the Y button on the gamepad (Triangle on a PS4 controller)
*
* This specific sample assumes that the Hub is mounted on one of the three orthogonal planes
* (X/Y, X/Z or Y/Z) and that the Hub has only been rotated in a range of 90 degree increments.
*
* Note: if your Hub is mounted on a surface angled at some non-90 Degree multiple (like 30) look at
* the alternative SensorIMUNonOrthogonal sample in this folder.
*
* This "Orthogonal" requirement means that:
*
* 1) The Logo printed on the top of the Hub can ONLY be pointing in one of six directions:
* FORWARD, BACKWARD, UP, DOWN, LEFT and RIGHT.
*
* 2) The USB ports can only be pointing in one of the same six directions:<br>
* FORWARD, BACKWARD, UP, DOWN, LEFT and RIGHT.
*
* So, To fully define how your Hub is mounted to the robot, you must simply specify:<br>
* logoFacingDirection<br>
* usbFacingDirection
*
* Use Android Studio to Copy this Class, and Paste it into your team's code folder with a new name.
* Remove or comment out the @Disabled line to add this OpMode to the Driver Station OpMode list.
*
* Finally, choose the two correct parameters to define how your Hub is mounted and edit this OpMode
* to use those parameters.
*/
@TeleOp(name = "Sensor: IMU Orthogonal", group = "Sensor")
@Disabled // Comment this out to add to the OpMode list
public class SensorIMUOrthogonal extends LinearOpMode {
// The IMU sensor object
IMU imu;
private Encoder leftEncoder;
private Encoder rightEncoder;
private Encoder strafeEncoder;
//----------------------------------------------------------------------------------------------
// Main logic
//----------------------------------------------------------------------------------------------
@Override
public void runOpMode() throws InterruptedException {
// Retrieve and initialize the IMU.
// This sample expects the IMU to be in a REV Hub and named "imu".
imu = hardwareMap.get(IMU.class, PedroConstants.IMU);
// TODO: replace these with your encoder ports
leftEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, LEFT_ENCODER));
rightEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, RIGHT_ENCODER));
strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_ENCODER));
// TODO: reverse any encoders necessary
leftEncoder.setDirection(LEFT_ENCODER_DIRECTION);
rightEncoder.setDirection(RIGHT_ENCODER_DIRECTION);
strafeEncoder.setDirection(BACK_ENCODER_DIRECTION);
/* Define how the hub is mounted on the robot to get the correct Yaw, Pitch and Roll values.
*
* Two input parameters are required to fully specify the Orientation.
* The first parameter specifies the direction the printed logo on the Hub is pointing.
* The second parameter specifies the direction the USB connector on the Hub is pointing.
* All directions are relative to the robot, and left/right is as-viewed from behind the robot.
*
* If you are using a REV 9-Axis IMU, you can use the Rev9AxisImuOrientationOnRobot class instead of the
* RevHubOrientationOnRobot class, which has an I2cPortFacingDirection instead of a UsbFacingDirection.
*/
/* The next two lines define Hub orientation.
* The Default Orientation (shown) is when a hub is mounted horizontally with the printed logo pointing UP and the USB port pointing FORWARD.
*
* To Do: EDIT these two lines to match YOUR mounting configuration.
*/
RevHubOrientationOnRobot.LogoFacingDirection logoDirection = IMU_LOGO_FACING_DIRECTION;
RevHubOrientationOnRobot.UsbFacingDirection usbDirection = IMU_USB_FACING_DIRECTION;
RevHubOrientationOnRobot orientationOnRobot = new RevHubOrientationOnRobot(logoDirection, usbDirection);
// Now initialize the IMU with this mounting orientation
// Note: if you choose two conflicting directions, this initialization will cause a code exception.
imu.initialize(new IMU.Parameters(orientationOnRobot));
// Loop and update the dashboard
while (!isStopRequested()) {
telemetry.addData("Hub orientation", "Logo=%s USB=%s\n ", logoDirection, usbDirection);
// Check to see if heading reset is requested
if (gamepad1.y) {
telemetry.addData("Yaw", "Resetting\n");
imu.resetYaw();
} else {
telemetry.addData("Yaw", "Press Y (triangle) on Gamepad to reset\n");
}
// Retrieve Rotational Angles and Velocities
YawPitchRollAngles orientation = imu.getRobotYawPitchRollAngles();
AngularVelocity angularVelocity = imu.getRobotAngularVelocity(AngleUnit.DEGREES);
telemetry.addData("Yaw (Z)", "%.2f Deg. (Heading)", orientation.getYaw(AngleUnit.DEGREES));
telemetry.addData("Pitch (X)", "%.2f Deg.", orientation.getPitch(AngleUnit.DEGREES));
telemetry.addData("Roll (Y)", "%.2f Deg.\n", orientation.getRoll(AngleUnit.DEGREES));
telemetry.addData("Yaw (Z) velocity", "%.2f Deg/Sec", angularVelocity.zRotationRate);
telemetry.addData("Pitch (X) velocity", "%.2f Deg/Sec", angularVelocity.xRotationRate);
telemetry.addData("Roll (Y) velocity", "%.2f Deg/Sec", angularVelocity.yRotationRate);
telemetry.update();
}
}
}

View File

@ -0,0 +1,95 @@
/* Copyright (c) 2021 FIRST. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided that
* the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.firstinspires.ftc.teamcode.cometbots.tests;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.hardware.Gamepad;
import com.qualcomm.robotcore.util.ElapsedTime;
import org.firstinspires.ftc.teamcode.subsystem.ArmSubsystem;
@TeleOp(name = "Arm Test", group = "Debug")
public class ArmTest extends LinearOpMode {
// Declare OpMode members for each of the 4 motors.
private final ElapsedTime runtime = new ElapsedTime();
@Override
public void runOpMode() {
/*
* Instantiate Arm
*/
ArmSubsystem arm = new ArmSubsystem(hardwareMap, ArmSubsystem.ArmState.PARK);
/*
* Instantiate gamepad state holders
*/
Gamepad currentGamepad1 = new Gamepad();
Gamepad previousGamepad1 = new Gamepad();
arm.init();
waitForStart();
runtime.reset();
// run until the end of the match (driver presses STOP)
while (opModeIsActive()) {
previousGamepad1.copy(currentGamepad1);
currentGamepad1.copy(gamepad1);
if (currentGamepad1.circle && !previousGamepad1.circle) {
arm.parkArm();
}
if (currentGamepad1.square && !previousGamepad1.square) {
arm.engageArm();
}
if (currentGamepad1.cross && !previousGamepad1.cross) {
arm.switchState();
}
if (currentGamepad1.left_bumper && !previousGamepad1.left_bumper) {
arm.setPosition(arm.getPosition() - .05);
}
if (currentGamepad1.right_bumper && !previousGamepad1.right_bumper) {
arm.setPosition(arm.getPosition() + .05);
}
telemetry.addData("Status", "Run Time: " + runtime.toString());
telemetry.addData("Arm State", arm.getState());
telemetry.addData("Arm Position", arm.getPosition());
telemetry.update();
}
}
}

View File

@ -0,0 +1,78 @@
/* Copyright (c) 2021 FIRST. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided that
* the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.firstinspires.ftc.teamcode.cometbots.tests;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.hardware.Gamepad;
import com.qualcomm.robotcore.util.ElapsedTime;
import org.firstinspires.ftc.teamcode.subsystem.ClawSubsystem;
@TeleOp(name = "Claw Test", group = "Debug")
public class ClawTest extends LinearOpMode {
// Declare OpMode members for each of the 4 motors.
private final ElapsedTime runtime = new ElapsedTime();
@Override
public void runOpMode() {
/*
* Instantiate Claw
*/
ClawSubsystem claw = new ClawSubsystem(hardwareMap, ClawSubsystem.ClawState.OPEN);
/*
* Instantiate gamepad state holders
*/
Gamepad currentGamepad1 = new Gamepad();
Gamepad previousGamepad1 = new Gamepad();
waitForStart();
runtime.reset();
// run until the end of the match (driver presses STOP)
while (opModeIsActive()) {
previousGamepad1.copy(currentGamepad1);
currentGamepad1.copy(gamepad1);
if (currentGamepad1.cross && !previousGamepad1.cross) {
claw.switchState();
}
// Show the elapsed game time and wheel power.
telemetry.addData("Status", "Run Time: " + runtime.toString());
telemetry.addData("Claw State", claw.getState());
telemetry.update();
}
}
}

View File

@ -0,0 +1,124 @@
/* Copyright (c) 2021 FIRST. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided that
* the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.firstinspires.ftc.teamcode.cometbots.tests;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DcMotorSimple;
import com.qualcomm.robotcore.hardware.Gamepad;
import com.qualcomm.robotcore.util.ElapsedTime;
@TeleOp(name = "Lift Raw Test", group = "Debug")
public class LiftRawTest extends LinearOpMode {
// Declare OpMode members for each of the 4 motors.
private final ElapsedTime runtime = new ElapsedTime();
private final int MIN_POINT = 0;
private final int MAX_POINT = 3700;
@Override
public void runOpMode() {
/*
* Instantiate Lift
*/
DcMotor liftDrive = hardwareMap.get(DcMotor.class, "lift-motor");
liftDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
liftDrive.setDirection(DcMotorSimple.Direction.REVERSE);
/*
* Instantiate gamepad state holders
*/
Gamepad currentGamepad1 = new Gamepad();
Gamepad previousGamepad1 = new Gamepad();
waitForStart();
runtime.reset();
// run until the end of the match (driver presses STOP)
while (opModeIsActive()) {
previousGamepad1.copy(currentGamepad1);
currentGamepad1.copy(gamepad1);
liftDrive.setPower(.5);
// Max position is 6800, safely setting to 6500
if (currentGamepad1.square && !previousGamepad1.square) {
liftDrive.setTargetPosition(MIN_POINT);
liftDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
}
if (currentGamepad1.triangle && !previousGamepad1.triangle) {
liftDrive.setTargetPosition(1500);
liftDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
}
if (currentGamepad1.circle && !previousGamepad1.circle) {
liftDrive.setTargetPosition(2750);
liftDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
}
if (currentGamepad1.cross && !previousGamepad1.cross) {
liftDrive.setTargetPosition(MAX_POINT);
liftDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
}
if (currentGamepad1.left_bumper && !previousGamepad1.left_bumper) {
int newPosition = liftDrive.getCurrentPosition() - 125;
if (newPosition < MIN_POINT) {
liftDrive.setTargetPosition(MIN_POINT);
} else {
liftDrive.setTargetPosition(newPosition);
}
liftDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
}
if (currentGamepad1.right_bumper && !previousGamepad1.right_bumper) {
int newPosition = liftDrive.getCurrentPosition() + 125;
if (newPosition > MAX_POINT) {
liftDrive.setTargetPosition(MAX_POINT);
} else {
liftDrive.setTargetPosition(newPosition);
}
liftDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
}
// Show the elapsed game time and wheel power.
telemetry.addData("Status", "Run Time: " + runtime.toString());
telemetry.addData("Lift Drive Position", liftDrive.getCurrentPosition());
telemetry.update();
}
}
}

View File

@ -0,0 +1,98 @@
/* Copyright (c) 2021 FIRST. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided that
* the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.firstinspires.ftc.teamcode.cometbots.tests;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.hardware.Gamepad;
import com.qualcomm.robotcore.util.ElapsedTime;
import org.firstinspires.ftc.teamcode.subsystem.LiftSubsystem;
@TeleOp(name = "Lift Test", group = "Debug")
public class LiftTest extends LinearOpMode {
// Declare OpMode members for each of the 4 motors.
private final ElapsedTime runtime = new ElapsedTime();
private final int MIN_POINT = 0;
// 2000 ~ 2500
// 3750 max
private final int MAX_POINT = 6500;
@Override
public void runOpMode() {
/*
* Instantiate Lift
*/
LiftSubsystem lift = new LiftSubsystem(hardwareMap);
/*
* Instantiate gamepad state holders
*/
Gamepad currentGamepad1 = new Gamepad();
Gamepad previousGamepad1 = new Gamepad();
lift.init();
waitForStart();
runtime.reset();
// run until the end of the match (driver presses STOP)
while (opModeIsActive()) {
previousGamepad1.copy(currentGamepad1);
currentGamepad1.copy(gamepad1);
if (currentGamepad1.square && !previousGamepad1.square) {
lift.toFloor();
}
if (currentGamepad1.triangle && !previousGamepad1.triangle) {
lift.toHighBucket();
}
if (currentGamepad1.circle && !previousGamepad1.circle) {
lift.toLowBucket();
}
if (currentGamepad1.cross && !previousGamepad1.cross) {
lift.switchState();
}
// Show the elapsed game time and wheel power.
telemetry.addData("Status", "Run Time: " + runtime.toString());
telemetry.addData("Lift Drive Position", lift.getPosition());
telemetry.update();
}
}
}

View File

@ -0,0 +1,96 @@
/* Copyright (c) 2021 FIRST. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided that
* the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.firstinspires.ftc.teamcode.cometbots.tests;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.hardware.Gamepad;
import com.qualcomm.robotcore.util.ElapsedTime;
import org.firstinspires.ftc.teamcode.subsystem.WristSubsystem;
@TeleOp(name = "Wrist Test", group = "Debug")
public class WristTest extends LinearOpMode {
// Declare OpMode members for each of the 4 motors.
private final ElapsedTime runtime = new ElapsedTime();
@Override
public void runOpMode() {
/*
* Instantiate Wrist
*/
WristSubsystem wrist = new WristSubsystem(hardwareMap, WristSubsystem.WristState.FLOOR);
/*
* Instantiate gamepad state holders
*/
Gamepad currentGamepad1 = new Gamepad();
Gamepad previousGamepad1 = new Gamepad();
wrist.init();
waitForStart();
runtime.reset();
// run until the end of the match (driver presses STOP)
while (opModeIsActive()) {
previousGamepad1.copy(currentGamepad1);
currentGamepad1.copy(gamepad1);
if (currentGamepad1.square && !previousGamepad1.square) {
wrist.bucketWrist();
}
if (currentGamepad1.circle && !previousGamepad1.circle) {
wrist.floorWrist();
}
if (currentGamepad1.cross && !previousGamepad1.cross) {
wrist.switchState();
}
if (currentGamepad1.left_bumper && !previousGamepad1.left_bumper) {
wrist.setPosition(wrist.getPosition() - .05);
}
if (currentGamepad1.right_bumper && !previousGamepad1.right_bumper) {
wrist.setPosition(wrist.getPosition() + .05);
}
// Show the elapsed game time and wheel power.
telemetry.addData("Status", "Run Time: " + runtime.toString());
telemetry.addData("Wrist State", wrist.getState());
telemetry.addData("Wrist Position", wrist.getPosition());
telemetry.update();
}
}
}

View File

@ -0,0 +1,22 @@
package org.firstinspires.ftc.teamcode.configs;
import com.acmerobotics.dashboard.config.Config;
@Config
public class RobotConstants {
public static double clawClose = 1.00;
public static double clawOpen = 0.05;
public static double armEngage = 0.5;
public static double armPark = 0.125;
public static double armBucket = 0.175;
public static double wristFloor = 0.625;
public static double wristBucket = 0.215;
public static int liftToFloorPos = 20;
public static int liftToFloatPos = 150;
public static int liftToLowBucketPos = 2250;
public static int liftToHighBucketPos = 3900;
public static double liftPower = .45;
public static int liftToHoverState = 60;
}

View File

@ -71,8 +71,9 @@ measurements will be in centimeters.
of how fast your robot will coast to a stop. Honestly, this is up to you. I personally used 4, but
what works best for you is most important. Higher numbers will cause a faster brake, but increase
oscillations at the end. Lower numbers will do the opposite. This can be found on line `107` in
`FollowerConstants`, named `zeroPowerAccelerationMultiplier`. The drive PID is much, much more
* sensitive than the others. For reference,
`FollowerConstants`, named `zeroPowerAccelerationMultiplier`.
* The drive PID is much, much more sensitive than the others. For reference,
my P values were in the hundredths and thousandths place values, and my D values were in the hundred
thousandths and millionths place values. To tune this, enable `useDrive`, `useHeading`, and
`useTranslational` in the `Follower` dropdown in FTC Dashboard. Next, run `StraightBackAndForth`

View File

@ -6,6 +6,9 @@ import com.qualcomm.robotcore.hardware.IMU;
import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers.DriveEncoderLocalizer;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers.ThreeWheelIMULocalizer;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers.ThreeWheelLocalizer;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers.TwoWheelLocalizer;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.MathFunctions;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Vector;
@ -67,7 +70,8 @@ public class PoseUpdater {
*/
public PoseUpdater(HardwareMap hardwareMap) {
// TODO: replace the second argument with your preferred localizer
this(hardwareMap, new DriveEncoderLocalizer(hardwareMap));
this(hardwareMap, new ThreeWheelLocalizer(hardwareMap));
// this(hardwareMap, new ThreeWheelIMULocalizer(hardwareMap));
}
/**

View File

@ -1,20 +1,11 @@
package org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR_ENCODER;
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.leftFrontMotorName;
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.leftRearMotorName;
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.rightFrontMotorName;
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.rightRearMotorName;
import com.acmerobotics.dashboard.config.Config;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import com.qualcomm.robotcore.hardware.HardwareMap;
@ -35,21 +26,21 @@ import org.firstinspires.ftc.teamcode.pedroPathing.util.NanoTimer;
*/
@Config
public class DriveEncoderLocalizer extends Localizer {
private final HardwareMap hardwareMap;
private HardwareMap hardwareMap;
private Pose startPose;
private Pose displacementPose;
private Pose currentVelocity;
private Matrix prevRotationMatrix;
private final NanoTimer timer;
private NanoTimer timer;
private long deltaTimeNano;
private final Encoder leftFront;
private final Encoder rightFront;
private final Encoder leftRear;
private final Encoder rightRear;
private Encoder leftFront;
private Encoder rightFront;
private Encoder leftRear;
private Encoder rightRear;
private double totalHeading;
public static double FORWARD_TICKS_TO_INCHES = -0.0058;
public static double STRAFE_TICKS_TO_INCHES = -0.0054;
public static double TURN_TICKS_TO_RADIANS = -0.0009;
public static double FORWARD_TICKS_TO_INCHES = -0.6308;
public static double STRAFE_TICKS_TO_INCHES = 46.4839;
public static double TURN_TICKS_TO_RADIANS = -0.002;
public static double ROBOT_WIDTH = 1;
public static double ROBOT_LENGTH = 1;
@ -67,32 +58,22 @@ public class DriveEncoderLocalizer extends Localizer {
* This creates a new DriveEncoderLocalizer from a HardwareMap and a Pose, with the Pose
* specifying the starting pose of the localizer.
*
* @param map the HardwareMap
* @param map the HardwareMap
* @param setStartPose the Pose to start from
*/
public DriveEncoderLocalizer(HardwareMap map, Pose setStartPose) {
hardwareMap = map;
leftFront = new Encoder(hardwareMap.get(DcMotorEx.class, FRONT_LEFT_MOTOR));
leftRear = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_LEFT_MOTOR));
rightRear = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_RIGHT_MOTOR));
rightFront = new Encoder(hardwareMap.get(DcMotorEx.class, FRONT_RIGHT_MOTOR));
DcMotor leftFrontDrive = hardwareMap.get(DcMotor.class, FRONT_LEFT_MOTOR);
DcMotor leftBackDrive = hardwareMap.get(DcMotor.class, BACK_LEFT_MOTOR);
DcMotor rightFrontDrive = hardwareMap.get(DcMotor.class, FRONT_RIGHT_MOTOR);
DcMotor rightBackDrive = hardwareMap.get(DcMotor.class, BACK_RIGHT_MOTOR);
leftFrontDrive.setDirection(FRONT_LEFT_MOTOR_DIRECTION);
leftBackDrive.setDirection(BACK_LEFT_MOTOR_DIRECTION);
rightFrontDrive.setDirection(FRONT_RIGHT_MOTOR_DIRECTION);
rightBackDrive.setDirection(BACK_RIGHT_MOTOR_DIRECTION);
leftFront = new Encoder(hardwareMap.get(DcMotorEx.class, leftFrontMotorName));
leftRear = new Encoder(hardwareMap.get(DcMotorEx.class, leftRearMotorName));
rightRear = new Encoder(hardwareMap.get(DcMotorEx.class, rightRearMotorName));
rightFront = new Encoder(hardwareMap.get(DcMotorEx.class, rightFrontMotorName));
// TODO: reverse any encoders necessary
leftFront.setDirection(FRONT_LEFT_MOTOR_ENCODER);
rightFront.setDirection(FRONT_RIGHT_MOTOR_ENCODER);
leftRear.setDirection(BACK_LEFT_MOTOR_ENCODER);
rightRear.setDirection(BACK_RIGHT_MOTOR_ENCODER);
leftFront.setDirection(Encoder.REVERSE);
rightRear.setDirection(Encoder.REVERSE);
leftRear.setDirection(Encoder.FORWARD);
rightRear.setDirection(Encoder.FORWARD);
setStartPose(setStartPose);
timer = new NanoTimer();
@ -148,7 +129,7 @@ public class DriveEncoderLocalizer extends Localizer {
* @param heading the rotation of the Matrix
*/
public void setPrevRotationMatrix(double heading) {
prevRotationMatrix = new Matrix(3, 3);
prevRotationMatrix = new Matrix(3,3);
prevRotationMatrix.set(0, 0, Math.cos(heading));
prevRotationMatrix.set(0, 1, -Math.sin(heading));
prevRotationMatrix.set(1, 0, Math.sin(heading));
@ -183,7 +164,7 @@ public class DriveEncoderLocalizer extends Localizer {
Matrix globalDeltas;
setPrevRotationMatrix(getPose().getHeading());
Matrix transformation = new Matrix(3, 3);
Matrix transformation = new Matrix(3,3);
if (Math.abs(robotDeltas.get(2, 0)) < 0.001) {
transformation.set(0, 0, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
transformation.set(0, 1, -robotDeltas.get(2, 0) / 2.0);
@ -233,13 +214,13 @@ public class DriveEncoderLocalizer extends Localizer {
* @return returns a Matrix containing the robot relative movement.
*/
public Matrix getRobotDeltas() {
Matrix returnMatrix = new Matrix(3, 1);
Matrix returnMatrix = new Matrix(3,1);
// x/forward movement
returnMatrix.set(0, 0, FORWARD_TICKS_TO_INCHES * (leftFront.getDeltaPosition() + rightFront.getDeltaPosition() + leftRear.getDeltaPosition() + rightRear.getDeltaPosition()));
returnMatrix.set(0,0, FORWARD_TICKS_TO_INCHES * (leftFront.getDeltaPosition() + rightFront.getDeltaPosition() + leftRear.getDeltaPosition() + rightRear.getDeltaPosition()));
//y/strafe movement
returnMatrix.set(1, 0, STRAFE_TICKS_TO_INCHES * (-leftFront.getDeltaPosition() + rightFront.getDeltaPosition() + leftRear.getDeltaPosition() - rightRear.getDeltaPosition()));
returnMatrix.set(1,0, STRAFE_TICKS_TO_INCHES * (-leftFront.getDeltaPosition() + rightFront.getDeltaPosition() + leftRear.getDeltaPosition() - rightRear.getDeltaPosition()));
// theta/turning
returnMatrix.set(2, 0, TURN_TICKS_TO_RADIANS * ((-leftFront.getDeltaPosition() + rightFront.getDeltaPosition() - leftRear.getDeltaPosition() + rightRear.getDeltaPosition()) / (ROBOT_WIDTH + ROBOT_LENGTH)));
returnMatrix.set(2,0, TURN_TICKS_TO_RADIANS * ((-leftFront.getDeltaPosition() + rightFront.getDeltaPosition() - leftRear.getDeltaPosition() + rightRear.getDeltaPosition()) / (ROBOT_WIDTH + ROBOT_LENGTH)));
return returnMatrix;
}

View File

@ -0,0 +1,317 @@
package org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers;
import static org.firstinspires.ftc.teamcode.PedroConstants.*;
import com.acmerobotics.dashboard.config.Config;
import com.qualcomm.hardware.rev.RevHubOrientationOnRobot;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import com.qualcomm.robotcore.hardware.HardwareMap;
import com.qualcomm.robotcore.hardware.IMU;
import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Encoder;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Localizer;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Matrix;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.MathFunctions;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Vector;
import org.firstinspires.ftc.teamcode.pedroPathing.util.NanoTimer;
/**
* This is the ThreeWheelIMULocalizer class. This class extends the Localizer superclass and is a
* localizer that uses the three wheel odometry set up with the IMU to have more accurate heading
* readings. The diagram below, which is modified from Road Runner, shows a typical set up.
*
* The view is from the top of the robot looking downwards.
*
* left on robot is the y positive direction
*
* forward on robot is the x positive direction
*
* /--------------\
* | ____ |
* | ---- |
* | || || |
* | || || | ----> left (y positive)
* | |
* | |
* \--------------/
* |
* |
* V
* forward (x positive)
*
* @author Logan Nash
* @author Anyi Lin - 10158 Scott's Bots
* @version 1.0, 7/9/2024
*/
@Config
public class ThreeWheelIMULocalizer extends Localizer {
private HardwareMap hardwareMap;
private Pose startPose;
private Pose displacementPose;
private Pose currentVelocity;
private Matrix prevRotationMatrix;
private NanoTimer timer;
private long deltaTimeNano;
private Encoder leftEncoder;
private Encoder rightEncoder;
private Encoder strafeEncoder;
private Pose leftEncoderPose;
private Pose rightEncoderPose;
private Pose strafeEncoderPose;
public final IMU imu;
private double previousIMUOrientation;
private double deltaRadians;
private double totalHeading;
public static double FORWARD_TICKS_TO_INCHES = 0.004;//8192 * 1.37795 * 2 * Math.PI * 0.5008239963;
public static double STRAFE_TICKS_TO_INCHES = -0.0036;//8192 * 1.37795 * 2 * Math.PI * 0.5018874659;
public static double TURN_TICKS_TO_RADIANS = 0.0043;//8192 * 1.37795 * 2 * Math.PI * 0.5;
public static boolean useIMU = true;
/**
* This creates a new ThreeWheelIMULocalizer from a HardwareMap, with a starting Pose at (0,0)
* facing 0 heading.
*
* @param map the HardwareMap
*/
public ThreeWheelIMULocalizer(HardwareMap map) {
this(map, new Pose());
}
/**
* This creates a new ThreeWheelIMULocalizer from a HardwareMap and a Pose, with the Pose
* specifying the starting pose of the localizer.
*
* @param map the HardwareMap
* @param setStartPose the Pose to start from
*/
public ThreeWheelIMULocalizer(HardwareMap map, Pose setStartPose) {
hardwareMap = map;
imu = hardwareMap.get(IMU.class, IMU);
// TODO: replace this with your IMU's orientation
imu.initialize(new IMU.Parameters(new RevHubOrientationOnRobot(IMU_LOGO_FACING_DIRECTION, IMU_USB_FACING_DIRECTION)));
// TODO: replace these with your encoder positions
leftEncoderPose = new Pose(-7.625, 6.19375, 0);
rightEncoderPose = new Pose(-7.625, -6.19375, 0);
strafeEncoderPose = new Pose(7, 1, Math.toRadians(90));
// TODO: replace these with your encoder ports
leftEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, LEFT_ENCODER));
rightEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, RIGHT_ENCODER));
strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_ENCODER));
// TODO: reverse any encoders necessary
leftEncoder.setDirection(LEFT_ENCODER_DIRECTION);
rightEncoder.setDirection(RIGHT_ENCODER_DIRECTION);
strafeEncoder.setDirection(BACK_ENCODER_DIRECTION);
setStartPose(setStartPose);
timer = new NanoTimer();
deltaTimeNano = 1;
displacementPose = new Pose();
currentVelocity = new Pose();
totalHeading = 0;
resetEncoders();
}
/**
* This returns the current pose estimate.
*
* @return returns the current pose estimate as a Pose
*/
@Override
public Pose getPose() {
return MathFunctions.addPoses(startPose, displacementPose);
}
/**
* This returns the current velocity estimate.
*
* @return returns the current velocity estimate as a Pose
*/
@Override
public Pose getVelocity() {
return currentVelocity.copy();
}
/**
* This returns the current velocity estimate.
*
* @return returns the current velocity estimate as a Vector
*/
@Override
public Vector getVelocityVector() {
return currentVelocity.getVector();
}
/**
* This sets the start pose. Changing the start pose should move the robot as if all its
* previous movements were displacing it from its new start pose.
*
* @param setStart the new start pose
*/
@Override
public void setStartPose(Pose setStart) {
startPose = setStart;
}
/**
* This sets the Matrix that contains the previous pose's heading rotation.
*
* @param heading the rotation of the Matrix
*/
public void setPrevRotationMatrix(double heading) {
prevRotationMatrix = new Matrix(3,3);
prevRotationMatrix.set(0, 0, Math.cos(heading));
prevRotationMatrix.set(0, 1, -Math.sin(heading));
prevRotationMatrix.set(1, 0, Math.sin(heading));
prevRotationMatrix.set(1, 1, Math.cos(heading));
prevRotationMatrix.set(2, 2, 1.0);
}
/**
* This sets the current pose estimate. Changing this should just change the robot's current
* pose estimate, not anything to do with the start pose.
*
* @param setPose the new current pose estimate
*/
@Override
public void setPose(Pose setPose) {
displacementPose = MathFunctions.subtractPoses(setPose, startPose);
resetEncoders();
}
/**
* This updates the elapsed time timer that keeps track of time between updates, as well as the
* change position of the Encoders. Then, the robot's global change in position is calculated
* using the pose exponential method.
*/
@Override
public void update() {
deltaTimeNano = timer.getElapsedTime();
timer.resetTimer();
updateEncoders();
Matrix robotDeltas = getRobotDeltas();
Matrix globalDeltas;
setPrevRotationMatrix(getPose().getHeading());
Matrix transformation = new Matrix(3,3);
if (Math.abs(robotDeltas.get(2, 0)) < 0.001) {
transformation.set(0, 0, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
transformation.set(0, 1, -robotDeltas.get(2, 0) / 2.0);
transformation.set(1, 0, robotDeltas.get(2, 0) / 2.0);
transformation.set(1, 1, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
transformation.set(2, 2, 1.0);
} else {
transformation.set(0, 0, Math.sin(robotDeltas.get(2, 0)) / robotDeltas.get(2, 0));
transformation.set(0, 1, (Math.cos(robotDeltas.get(2, 0)) - 1.0) / robotDeltas.get(2, 0));
transformation.set(1, 0, (1.0 - Math.cos(robotDeltas.get(2, 0))) / robotDeltas.get(2, 0));
transformation.set(1, 1, Math.sin(robotDeltas.get(2, 0)) / robotDeltas.get(2, 0));
transformation.set(2, 2, 1.0);
}
globalDeltas = Matrix.multiply(Matrix.multiply(prevRotationMatrix, transformation), robotDeltas);
displacementPose.add(new Pose(globalDeltas.get(0, 0), globalDeltas.get(1, 0), globalDeltas.get(2, 0)));
currentVelocity = new Pose(globalDeltas.get(0, 0) / (deltaTimeNano * Math.pow(10.0, 9)), globalDeltas.get(1, 0) / (deltaTimeNano * Math.pow(10.0, 9)), globalDeltas.get(2, 0) / (deltaTimeNano * Math.pow(10.0, 9)));
totalHeading += globalDeltas.get(2, 0);
}
/**
* This updates the Encoders.
*/
public void updateEncoders() {
leftEncoder.update();
rightEncoder.update();
strafeEncoder.update();
double currentIMUOrientation = MathFunctions.normalizeAngle(imu.getRobotYawPitchRollAngles().getYaw(AngleUnit.RADIANS));
deltaRadians = MathFunctions.getTurnDirection(previousIMUOrientation, currentIMUOrientation) * MathFunctions.getSmallestAngleDifference(currentIMUOrientation, previousIMUOrientation);
previousIMUOrientation = currentIMUOrientation;
}
/**
* This resets the Encoders.
*/
public void resetEncoders() {
leftEncoder.reset();
rightEncoder.reset();
strafeEncoder.reset();
}
/**
* This calculates the change in position from the perspective of the robot using information
* from the Encoders.
*
* @return returns a Matrix containing the robot relative movement.
*/
public Matrix getRobotDeltas() {
Matrix returnMatrix = new Matrix(3,1);
// x/forward movement
returnMatrix.set(0,0, FORWARD_TICKS_TO_INCHES * ((rightEncoder.getDeltaPosition() * leftEncoderPose.getY() - leftEncoder.getDeltaPosition() * rightEncoderPose.getY()) / (leftEncoderPose.getY() - rightEncoderPose.getY())));
//y/strafe movement
returnMatrix.set(1,0, STRAFE_TICKS_TO_INCHES * (strafeEncoder.getDeltaPosition() - strafeEncoderPose.getX() * ((rightEncoder.getDeltaPosition() - leftEncoder.getDeltaPosition()) / (leftEncoderPose.getY() - rightEncoderPose.getY()))));
// theta/turning
if (MathFunctions.getSmallestAngleDifference(0, deltaRadians) > 0.00005 && useIMU) {
returnMatrix.set(2, 0, deltaRadians);
} else {
returnMatrix.set(2,0, TURN_TICKS_TO_RADIANS * ((rightEncoder.getDeltaPosition() - leftEncoder.getDeltaPosition()) / (leftEncoderPose.getY() - rightEncoderPose.getY())));
}
return returnMatrix;
}
/**
* This returns how far the robot has turned in radians, in a number not clamped between 0 and
* 2 * pi radians. This is used for some tuning things and nothing actually within the following.
*
* @return returns how far the robot has turned in total, in radians.
*/
public double getTotalHeading() {
return totalHeading;
}
/**
* This returns the multiplier applied to forward movement measurement to convert from encoder
* ticks to inches. This is found empirically through a tuner.
*
* @return returns the forward ticks to inches multiplier
*/
public double getForwardMultiplier() {
return FORWARD_TICKS_TO_INCHES;
}
/**
* This returns the multiplier applied to lateral/strafe movement measurement to convert from
* encoder ticks to inches. This is found empirically through a tuner.
*
* @return returns the lateral/strafe ticks to inches multiplier
*/
public double getLateralMultiplier() {
return STRAFE_TICKS_TO_INCHES;
}
/**
* This returns the multiplier applied to turning movement measurement to convert from encoder
* ticks to radians. This is found empirically through a tuner.
*
* @return returns the turning ticks to radians multiplier
*/
public double getTurningMultiplier() {
return TURN_TICKS_TO_RADIANS;
}
/**
* This resets the IMU.
*/
public void resetIMU() {
imu.resetYaw();
}
}

View File

@ -0,0 +1,297 @@
package org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers;
import static org.firstinspires.ftc.teamcode.PedroConstants.*;
import com.acmerobotics.dashboard.config.Config;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import com.qualcomm.robotcore.hardware.HardwareMap;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Encoder;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Localizer;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Matrix;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.MathFunctions;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Vector;
import org.firstinspires.ftc.teamcode.pedroPathing.util.NanoTimer;
/**
* This is the ThreeWheelLocalizer class. This class extends the Localizer superclass and is a
* localizer that uses the three wheel odometry set up. The diagram below, which is modified from
* Road Runner, shows a typical set up.
*
* The view is from the top of the robot looking downwards.
*
* left on robot is the y positive direction
*
* forward on robot is the x positive direction
*
* /--------------\
* | ____ |
* | ---- |
* | || || |
* | || || | ----> left (y positive)
* | |
* | |
* \--------------/
* |
* |
* V
* forward (x positive)
*
* @author Anyi Lin - 10158 Scott's Bots
* @version 1.0, 4/2/2024
*/
@Config
public class ThreeWheelLocalizer extends Localizer {
private HardwareMap hardwareMap;
private Pose startPose;
private Pose displacementPose;
private Pose currentVelocity;
private Matrix prevRotationMatrix;
private NanoTimer timer;
private long deltaTimeNano;
private Encoder leftEncoder;
private Encoder rightEncoder;
private Encoder strafeEncoder;
private Pose leftEncoderPose;
private Pose rightEncoderPose;
private Pose strafeEncoderPose;
private double totalHeading;
// public static double FORWARD_TICKS_TO_INCHES = 0.00052189;//8192 * 1.37795 * 2 * Math.PI * 0.5008239963;
public static double FORWARD_TICKS_TO_INCHES = 0.0029;//8192 * 1.37795 * 2 * Math.PI * 0.5008239963;
// public static double STRAFE_TICKS_TO_INCHES = 0.00052189;//8192 * 1.37795 * 2 * Math.PI * 0.5018874659;
public static double STRAFE_TICKS_TO_INCHES = 0.0029;//8192 * 1.37795 * 2 * Math.PI * 0.5018874659;
// public static double TURN_TICKS_TO_RADIANS = 0.00053717;//8192 * 1.37795 * 2 * Math.PI * 0.5;
public static double TURN_TICKS_TO_RADIANS = 0.003;//8192 * 1.37795 * 2 * Math.PI * 0.5;
/**
* This creates a new ThreeWheelLocalizer from a HardwareMap, with a starting Pose at (0,0)
* facing 0 heading.
*
* @param map the HardwareMap
*/
public ThreeWheelLocalizer(HardwareMap map) {
this(map, new Pose());
}
/**
* This creates a new ThreeWheelLocalizer from a HardwareMap and a Pose, with the Pose
* specifying the starting pose of the localizer.
*
* @param map the HardwareMap
* @param setStartPose the Pose to start from
*/
public ThreeWheelLocalizer(HardwareMap map, Pose setStartPose) {
// TODO: replace these with your encoder positions
leftEncoderPose = new Pose(0, 6.19375, 0);
rightEncoderPose = new Pose(0, -6.19375, 0);
strafeEncoderPose = new Pose(-7, 0, Math.toRadians(90));
hardwareMap = map;
// TODO: replace these with your encoder ports
leftEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, LEFT_ENCODER));
rightEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, RIGHT_ENCODER));
strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_ENCODER));
// TODO: reverse any encoders necessary
leftEncoder.setDirection(LEFT_ENCODER_DIRECTION);
rightEncoder.setDirection(RIGHT_ENCODER_DIRECTION);
strafeEncoder.setDirection(BACK_ENCODER_DIRECTION);
setStartPose(setStartPose);
timer = new NanoTimer();
deltaTimeNano = 1;
displacementPose = new Pose();
currentVelocity = new Pose();
totalHeading = 0;
resetEncoders();
}
/**
* This returns the current pose estimate.
*
* @return returns the current pose estimate as a Pose
*/
@Override
public Pose getPose() {
return MathFunctions.addPoses(startPose, displacementPose);
}
/**
* This returns the current velocity estimate.
*
* @return returns the current velocity estimate as a Pose
*/
@Override
public Pose getVelocity() {
return currentVelocity.copy();
}
/**
* This returns the current velocity estimate.
*
* @return returns the current velocity estimate as a Vector
*/
@Override
public Vector getVelocityVector() {
return currentVelocity.getVector();
}
/**
* This sets the start pose. Changing the start pose should move the robot as if all its
* previous movements were displacing it from its new start pose.
*
* @param setStart the new start pose
*/
@Override
public void setStartPose(Pose setStart) {
startPose = setStart;
}
/**
* This sets the Matrix that contains the previous pose's heading rotation.
*
* @param heading the rotation of the Matrix
*/
public void setPrevRotationMatrix(double heading) {
prevRotationMatrix = new Matrix(3,3);
prevRotationMatrix.set(0, 0, Math.cos(heading));
prevRotationMatrix.set(0, 1, -Math.sin(heading));
prevRotationMatrix.set(1, 0, Math.sin(heading));
prevRotationMatrix.set(1, 1, Math.cos(heading));
prevRotationMatrix.set(2, 2, 1.0);
}
/**
* This sets the current pose estimate. Changing this should just change the robot's current
* pose estimate, not anything to do with the start pose.
*
* @param setPose the new current pose estimate
*/
@Override
public void setPose(Pose setPose) {
displacementPose = MathFunctions.subtractPoses(setPose, startPose);
resetEncoders();
}
/**
* This updates the elapsed time timer that keeps track of time between updates, as well as the
* change position of the Encoders. Then, the robot's global change in position is calculated
* using the pose exponential method.
*/
@Override
public void update() {
deltaTimeNano = timer.getElapsedTime();
timer.resetTimer();
updateEncoders();
Matrix robotDeltas = getRobotDeltas();
Matrix globalDeltas;
setPrevRotationMatrix(getPose().getHeading());
Matrix transformation = new Matrix(3,3);
if (Math.abs(robotDeltas.get(2, 0)) < 0.001) {
transformation.set(0, 0, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
transformation.set(0, 1, -robotDeltas.get(2, 0) / 2.0);
transformation.set(1, 0, robotDeltas.get(2, 0) / 2.0);
transformation.set(1, 1, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
transformation.set(2, 2, 1.0);
} else {
transformation.set(0, 0, Math.sin(robotDeltas.get(2, 0)) / robotDeltas.get(2, 0));
transformation.set(0, 1, (Math.cos(robotDeltas.get(2, 0)) - 1.0) / robotDeltas.get(2, 0));
transformation.set(1, 0, (1.0 - Math.cos(robotDeltas.get(2, 0))) / robotDeltas.get(2, 0));
transformation.set(1, 1, Math.sin(robotDeltas.get(2, 0)) / robotDeltas.get(2, 0));
transformation.set(2, 2, 1.0);
}
globalDeltas = Matrix.multiply(Matrix.multiply(prevRotationMatrix, transformation), robotDeltas);
displacementPose.add(new Pose(globalDeltas.get(0, 0), globalDeltas.get(1, 0), globalDeltas.get(2, 0)));
currentVelocity = new Pose(globalDeltas.get(0, 0) / (deltaTimeNano * Math.pow(10.0, 9)), globalDeltas.get(1, 0) / (deltaTimeNano * Math.pow(10.0, 9)), globalDeltas.get(2, 0) / (deltaTimeNano * Math.pow(10.0, 9)));
totalHeading += globalDeltas.get(2, 0);
}
/**
* This updates the Encoders.
*/
public void updateEncoders() {
leftEncoder.update();
rightEncoder.update();
strafeEncoder.update();
}
/**
* This resets the Encoders.
*/
public void resetEncoders() {
leftEncoder.reset();
rightEncoder.reset();
strafeEncoder.reset();
}
/**
* This calculates the change in position from the perspective of the robot using information
* from the Encoders.
*
* @return returns a Matrix containing the robot relative movement.
*/
public Matrix getRobotDeltas() {
Matrix returnMatrix = new Matrix(3,1);
// x/forward movement
returnMatrix.set(0,0, FORWARD_TICKS_TO_INCHES * ((rightEncoder.getDeltaPosition() * leftEncoderPose.getY() - leftEncoder.getDeltaPosition() * rightEncoderPose.getY()) / (leftEncoderPose.getY() - rightEncoderPose.getY())));
//y/strafe movement
returnMatrix.set(1,0, STRAFE_TICKS_TO_INCHES * (strafeEncoder.getDeltaPosition() - strafeEncoderPose.getX() * ((rightEncoder.getDeltaPosition() - leftEncoder.getDeltaPosition()) / (leftEncoderPose.getY() - rightEncoderPose.getY()))));
// theta/turning
returnMatrix.set(2,0, TURN_TICKS_TO_RADIANS * ((rightEncoder.getDeltaPosition() - leftEncoder.getDeltaPosition()) / (leftEncoderPose.getY() - rightEncoderPose.getY())));
return returnMatrix;
}
/**
* This returns how far the robot has turned in radians, in a number not clamped between 0 and
* 2 * pi radians. This is used for some tuning things and nothing actually within the following.
*
* @return returns how far the robot has turned in total, in radians.
*/
public double getTotalHeading() {
return totalHeading;
}
/**
* This returns the multiplier applied to forward movement measurement to convert from encoder
* ticks to inches. This is found empirically through a tuner.
*
* @return returns the forward ticks to inches multiplier
*/
public double getForwardMultiplier() {
return FORWARD_TICKS_TO_INCHES;
}
/**
* This returns the multiplier applied to lateral/strafe movement measurement to convert from
* encoder ticks to inches. This is found empirically through a tuner.
*
* @return returns the lateral/strafe ticks to inches multiplier
*/
public double getLateralMultiplier() {
return STRAFE_TICKS_TO_INCHES;
}
/**
* This returns the multiplier applied to turning movement measurement to convert from encoder
* ticks to radians. This is found empirically through a tuner.
*
* @return returns the turning ticks to radians multiplier
*/
public double getTurningMultiplier() {
return TURN_TICKS_TO_RADIANS;
}
/**
* This does nothing since this localizer does not use the IMU.
*/
public void resetIMU() {
}
}

View File

@ -0,0 +1,302 @@
package org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.LEFT_ENCODER;
import com.acmerobotics.dashboard.config.Config;
import com.qualcomm.hardware.rev.RevHubOrientationOnRobot;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import com.qualcomm.robotcore.hardware.HardwareMap;
import com.qualcomm.robotcore.hardware.IMU;
import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Encoder;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Localizer;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Matrix;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.MathFunctions;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Vector;
import org.firstinspires.ftc.teamcode.pedroPathing.util.NanoTimer;
/**
* This is the TwoWheelLocalizer class. This class extends the Localizer superclass and is a
* localizer that uses the two wheel odometry with IMU set up. The diagram below, which is modified from
* Road Runner, shows a typical set up.
*
* The view is from the top of the robot looking downwards.
*
* left on robot is the y positive direction
*
* forward on robot is the x positive direction
*
* /--------------\
* | ____ |
* | ---- |
* | || || |
* | || || | ----> left (y positive)
* | |
* | |
* \--------------/
* |
* |
* V
* forward (x positive)
*
* @author Anyi Lin - 10158 Scott's Bots
* @version 1.0, 4/2/2024
*/
@Config
public class TwoWheelLocalizer extends Localizer { // todo: make two wheel odo work
private HardwareMap hardwareMap;
private IMU imu;
private Pose startPose;
private Pose displacementPose;
private Pose currentVelocity;
private Matrix prevRotationMatrix;
private NanoTimer timer;
private long deltaTimeNano;
private Encoder forwardEncoder;
private Encoder strafeEncoder;
private Pose forwardEncoderPose;
private Pose strafeEncoderPose;
private double previousIMUOrientation;
private double deltaRadians;
private double totalHeading;
public static double FORWARD_TICKS_TO_INCHES = 8192 * 1.37795 * 2 * Math.PI * 0.5008239963;
public static double STRAFE_TICKS_TO_INCHES = 8192 * 1.37795 * 2 * Math.PI * 0.5018874659;
/**
* This creates a new TwoWheelLocalizer from a HardwareMap, with a starting Pose at (0,0)
* facing 0 heading.
*
* @param map the HardwareMap
*/
public TwoWheelLocalizer(HardwareMap map) {
this(map, new Pose());
}
/**
* This creates a new TwoWheelLocalizer from a HardwareMap and a Pose, with the Pose
* specifying the starting pose of the localizer.
*
* @param map the HardwareMap
* @param setStartPose the Pose to start from
*/
public TwoWheelLocalizer(HardwareMap map, Pose setStartPose) {
// TODO: replace these with your encoder positions
forwardEncoderPose = new Pose(-18.5/25.4 - 0.1, 164.4/25.4, 0);
strafeEncoderPose = new Pose(-107.9/25.4+0.25, -1.1/25.4-0.23, Math.toRadians(90));
hardwareMap = map;
imu = hardwareMap.get(IMU.class, "imu");
// TODO: replace this with your IMU's orientation
imu.initialize(new IMU.Parameters(new RevHubOrientationOnRobot(RevHubOrientationOnRobot.LogoFacingDirection.UP, RevHubOrientationOnRobot.UsbFacingDirection.LEFT)));
// TODO: replace these with your encoder ports
forwardEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, LEFT_ENCODER));
strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_ENCODER));
// TODO: reverse any encoders necessary
forwardEncoder.setDirection(Encoder.REVERSE);
strafeEncoder.setDirection(Encoder.FORWARD);
setStartPose(setStartPose);
timer = new NanoTimer();
deltaTimeNano = 1;
displacementPose = new Pose();
currentVelocity = new Pose();
previousIMUOrientation = MathFunctions.normalizeAngle(imu.getRobotYawPitchRollAngles().getYaw(AngleUnit.RADIANS));
deltaRadians = 0;
}
/**
* This returns the current pose estimate.
*
* @return returns the current pose estimate as a Pose
*/
@Override
public Pose getPose() {
return MathFunctions.addPoses(startPose, displacementPose);
}
/**
* This returns the current velocity estimate.
*
* @return returns the current velocity estimate as a Pose
*/
@Override
public Pose getVelocity() {
return currentVelocity.copy();
}
/**
* This returns the current velocity estimate.
*
* @return returns the current velocity estimate as a Vector
*/
@Override
public Vector getVelocityVector() {
return currentVelocity.getVector();
}
/**
* This sets the start pose. Changing the start pose should move the robot as if all its
* previous movements were displacing it from its new start pose.
*
* @param setStart the new start pose
*/
@Override
public void setStartPose(Pose setStart) {
startPose = setStart;
}
/**
* This sets the Matrix that contains the previous pose's heading rotation.
*
* @param heading the rotation of the Matrix
*/
public void setPrevRotationMatrix(double heading) {
prevRotationMatrix = new Matrix(3,3);
prevRotationMatrix.set(0, 0, Math.cos(heading));
prevRotationMatrix.set(0, 1, -Math.sin(heading));
prevRotationMatrix.set(1, 0, Math.sin(heading));
prevRotationMatrix.set(1, 1, Math.cos(heading));
prevRotationMatrix.set(2, 2, 1.0);
}
/**
* This sets the current pose estimate. Changing this should just change the robot's current
* pose estimate, not anything to do with the start pose.
*
* @param setPose the new current pose estimate
*/
@Override
public void setPose(Pose setPose) {
displacementPose = MathFunctions.subtractPoses(setPose, startPose);
resetEncoders();
}
/**
* This updates the elapsed time timer that keeps track of time between updates, as well as the
* change position of the Encoders and the IMU readings. Then, the robot's global change in
* position is calculated using the pose exponential method.
*/
@Override
public void update() {
deltaTimeNano = timer.getElapsedTime();
timer.resetTimer();
updateEncoders();
Matrix robotDeltas = getRobotDeltas();
Matrix globalDeltas;
setPrevRotationMatrix(getPose().getHeading());
Matrix transformation = new Matrix(3,3);
if (Math.abs(robotDeltas.get(2, 0)) < 0.001) {
transformation.set(0, 0, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
transformation.set(0, 1, -robotDeltas.get(2, 0) / 2.0);
transformation.set(1, 0, robotDeltas.get(2, 0) / 2.0);
transformation.set(1, 1, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
transformation.set(2, 2, 1.0);
} else {
transformation.set(0, 0, Math.sin(robotDeltas.get(2, 0)) / robotDeltas.get(2, 0));
transformation.set(0, 1, (Math.cos(robotDeltas.get(2, 0)) - 1.0) / robotDeltas.get(2, 0));
transformation.set(1, 0, (1.0 - Math.cos(robotDeltas.get(2, 0))) / robotDeltas.get(2, 0));
transformation.set(1, 1, Math.sin(robotDeltas.get(2, 0)) / robotDeltas.get(2, 0));
transformation.set(2, 2, 1.0);
}
globalDeltas = Matrix.multiply(Matrix.multiply(prevRotationMatrix, transformation), robotDeltas);
displacementPose.add(new Pose(globalDeltas.get(0, 0), globalDeltas.get(1, 0), globalDeltas.get(2, 0)));
currentVelocity = new Pose(globalDeltas.get(0, 0) / (deltaTimeNano * Math.pow(10.0, 9)), globalDeltas.get(1, 0) / (deltaTimeNano * Math.pow(10.0, 9)), globalDeltas.get(2, 0) / (deltaTimeNano * Math.pow(10.0, 9)));
totalHeading += globalDeltas.get(2, 0);
}
/**
* This updates the Encoders as well as the IMU.
*/
public void updateEncoders() {
forwardEncoder.update();
strafeEncoder.update();
double currentIMUOrientation = MathFunctions.normalizeAngle(imu.getRobotYawPitchRollAngles().getYaw(AngleUnit.RADIANS));
deltaRadians = MathFunctions.getTurnDirection(previousIMUOrientation, currentIMUOrientation) * MathFunctions.getSmallestAngleDifference(currentIMUOrientation, previousIMUOrientation);
previousIMUOrientation = currentIMUOrientation;
}
/**
* This resets the Encoders.
*/
public void resetEncoders() {
forwardEncoder.reset();
strafeEncoder.reset();
}
/**
* This calculates the change in position from the perspective of the robot using information
* from the Encoders and IMU.
*
* @return returns a Matrix containing the robot relative movement.
*/
public Matrix getRobotDeltas() {
Matrix returnMatrix = new Matrix(3,1);
// x/forward movement
returnMatrix.set(0,0, FORWARD_TICKS_TO_INCHES * (forwardEncoder.getDeltaPosition() - forwardEncoderPose.getY() * deltaRadians));
//y/strafe movement
returnMatrix.set(1,0, STRAFE_TICKS_TO_INCHES * (strafeEncoder.getDeltaPosition() - strafeEncoderPose.getX() * deltaRadians));
// theta/turning
returnMatrix.set(2,0, deltaRadians);
return returnMatrix;
}
/**
* This returns how far the robot has turned in radians, in a number not clamped between 0 and
* 2 * pi radians. This is used for some tuning things and nothing actually within the following.
*
* @return returns how far the robot has turned in total, in radians.
*/
public double getTotalHeading() {
return totalHeading;
}
/**
* This returns the multiplier applied to forward movement measurement to convert from encoder
* ticks to inches. This is found empirically through a tuner.
*
* @return returns the forward ticks to inches multiplier
*/
public double getForwardMultiplier() {
return FORWARD_TICKS_TO_INCHES;
}
/**
* This returns the multiplier applied to lateral/strafe movement measurement to convert from
* encoder ticks to inches. This is found empirically through a tuner.
*
* @return returns the lateral/strafe ticks to inches multiplier
*/
public double getLateralMultiplier() {
return STRAFE_TICKS_TO_INCHES;
}
/**
* This returns the multiplier applied to turning movement measurement to convert from encoder
* ticks to radians. This is found empirically through a tuner.
*
* @return returns the turning ticks to radians multiplier
*/
public double getTurningMultiplier() {
return 1;
}
/**
* This resets the IMU.
*/
public void resetIMU() {
imu.resetYaw();
}
}

View File

@ -58,6 +58,9 @@ public class LocalizationTest extends OpMode {
rightRear = hardwareMap.get(DcMotorEx.class, rightRearMotorName);
rightFront = hardwareMap.get(DcMotorEx.class, rightFrontMotorName);
leftFront.setDirection(DcMotorSimple.Direction.REVERSE);
leftRear.setDirection(DcMotorSimple.Direction.REVERSE);
motors = Arrays.asList(leftFront, leftRear, rightFront, rightRear);
for (DcMotorEx motor : motors) {

View File

@ -42,7 +42,7 @@ public class FollowerConstants {
public static CustomPIDFCoefficients translationalPIDFCoefficients = new CustomPIDFCoefficients(
0.1,
0,
0,
0.01,
0);
// Translational Integral
@ -58,9 +58,9 @@ public class FollowerConstants {
// Heading error PIDF coefficients
public static CustomPIDFCoefficients headingPIDFCoefficients = new CustomPIDFCoefficients(
1,
0,
2,
0,
.025,
0);
// Feed forward constant added on to the heading PIDF
@ -69,10 +69,10 @@ public class FollowerConstants {
// Drive PIDF coefficients
public static CustomFilteredPIDFCoefficients drivePIDFCoefficients = new CustomFilteredPIDFCoefficients(
0.025,
0.006,
0,
0.00001,
0.6,
0.8,
0);
// Feed forward constant added on to the drive PIDF
@ -81,7 +81,7 @@ public class FollowerConstants {
// Kalman filter parameters for the drive error Kalman filter
public static KalmanFilterParameters driveKalmanFilterParameters = new KalmanFilterParameters(
6,
1);
3);
// Mass of robot in kilograms
@ -202,9 +202,9 @@ public class FollowerConstants {
// Secondary drive PIDF coefficients
public static CustomFilteredPIDFCoefficients secondaryDrivePIDFCoefficients = new CustomFilteredPIDFCoefficients(
0.00315,
0.02,
0,
0.0001,
0.000005,
0.6,
0);

View File

@ -0,0 +1,114 @@
package org.firstinspires.ftc.teamcode.runmodes;
import com.qualcomm.robotcore.hardware.HardwareMap;
import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Path;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
import org.firstinspires.ftc.teamcode.pedroPathing.util.Timer;
import org.firstinspires.ftc.teamcode.subsystem.ArmSubsystem;
import org.firstinspires.ftc.teamcode.subsystem.ClawSubsystem;
import static org.firstinspires.ftc.teamcode.util.action.FieldConstants.*;
import org.firstinspires.ftc.teamcode.subsystem.WristSubsystem;
import org.firstinspires.ftc.teamcode.util.action.Action;
import org.firstinspires.ftc.teamcode.util.action.RunAction;
import org.firstinspires.ftc.teamcode.util.action.SequentialAction;
import org.firstinspires.ftc.teamcode.util.action.SleepAction;
public class Auto {
public ClawSubsystem claw;
public ArmSubsystem arm;
public WristSubsystem wrist;
public Timer clawTimer = new Timer();
public Timer armTimer = new Timer();
public Timer wristTimer = new Timer();
public Follower follower;
public Telemetry telemetry;
public int caseState = 1;
public Auto(HardwareMap hardwareMap, Telemetry telemetry, Follower follower) {
claw = new ClawSubsystem(hardwareMap, ClawSubsystem.ClawState.CLOSED);
arm = new ArmSubsystem(hardwareMap, ArmSubsystem.ArmState.PARK);
wrist = new WristSubsystem(hardwareMap, WristSubsystem.WristState.FLOOR);
this.follower = follower;
this.telemetry = telemetry;
init();
}
public void init() {
claw.init();
arm.init();
wrist.init();
}
public void start() {
clawTimer.resetTimer();
armTimer.resetTimer();
wristTimer.resetTimer();
claw.start();
arm.start();
wrist.start();
}
public void update() {
this.telemetry.addData("Current State", caseState);
this.telemetry.addData("Claw Timer", clawTimer.getElapsedTimeSeconds());
this.telemetry.addData("Arm Timer", armTimer.getElapsedTimeSeconds());
this.telemetry.addData("Wrist Timer", wristTimer.getElapsedTimeSeconds());
this.telemetry.update();
switch(caseState) {
case 1:
claw.openClaw();
caseState = 2;
break;
case 2:
if (clawTimer.getElapsedTimeSeconds() > 2) {
arm.engageArm();
caseState = 3;
}
break;
case 3:
if (armTimer.getElapsedTimeSeconds() > 4) {
wrist.floorWrist();
caseState = 4;
}
break;
case 4:
if (clawTimer.getElapsedTimeSeconds() > 6) {
claw.closeClaw();
caseState = 5;
}
break;
case 5:
if (armTimer.getElapsedTimeSeconds() > 8) {
arm.bucketArm();
wrist.bucketWrist();
caseState = 6;
}
break;
case 6:
if (clawTimer.getElapsedTimeSeconds() > 10) {
claw.openClaw();
caseState = 7;
}
break;
case 7:
this.init();
break;
}
}
}

View File

@ -0,0 +1,89 @@
package org.firstinspires.ftc.teamcode.runmodes;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR_DIRECTION;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import com.qualcomm.robotcore.hardware.Gamepad;
import com.qualcomm.robotcore.hardware.HardwareMap;
import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.subsystem.ClawSubsystem;
import org.firstinspires.ftc.teamcode.util.action.RunAction;
public class Teleop {
private ClawSubsystem claw;
private Follower follower;
private DcMotorEx leftFront;
private DcMotorEx leftRear;
private DcMotorEx rightFront;
private DcMotorEx rightRear;
private Telemetry telemetry;
private Gamepad gamepad1;
private Gamepad currentGamepad1;
private Gamepad previousGamepad1;
public Teleop(HardwareMap hardwareMap, Telemetry telemetry, Follower follower, Gamepad gamepad1) {
claw = new ClawSubsystem(hardwareMap, ClawSubsystem.ClawState.CLOSED);
initMotors(hardwareMap);
this.follower = follower;
this.telemetry = telemetry;
this.gamepad1 = gamepad1;
this.currentGamepad1 = new Gamepad();
this.previousGamepad1 = new Gamepad();
}
public void start() {
claw.start();
follower.startTeleopDrive();
}
public void update() {
previousGamepad1.copy(currentGamepad1);
currentGamepad1.copy(gamepad1);
if (currentGamepad1.a && !previousGamepad1.a)
claw.switchState();
follower.setTeleOpMovementVectors(-gamepad1.left_stick_y, -gamepad1.left_stick_x, -gamepad1.right_stick_x);
follower.update();
telemetry.addData("X", follower.getPose().getX());
telemetry.addData("Y", follower.getPose().getY());
telemetry.addData("Heading", Math.toDegrees(follower.getPose().getHeading()));
telemetry.addData("Claw State", claw.getState());
telemetry.update();
}
private void initMotors(HardwareMap hardwareMap) {
rightFront = hardwareMap.get(DcMotorEx.class, FRONT_RIGHT_MOTOR);
rightRear = hardwareMap.get(DcMotorEx.class, BACK_RIGHT_MOTOR);
leftFront = hardwareMap.get(DcMotorEx.class, FRONT_LEFT_MOTOR);
leftRear = hardwareMap.get(DcMotorEx.class, BACK_LEFT_MOTOR);
rightFront.setDirection(FRONT_RIGHT_MOTOR_DIRECTION);
rightRear.setDirection(BACK_RIGHT_MOTOR_DIRECTION);
leftFront.setDirection(FRONT_LEFT_MOTOR_DIRECTION);
leftRear.setDirection(BACK_LEFT_MOTOR_DIRECTION);
leftFront.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
leftRear.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
rightRear.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
rightFront.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
}
}

View File

@ -0,0 +1,89 @@
package org.firstinspires.ftc.teamcode.subsystem;
import static org.firstinspires.ftc.teamcode.configs.RobotConstants.armEngage;
import static org.firstinspires.ftc.teamcode.configs.RobotConstants.armPark;
import static org.firstinspires.ftc.teamcode.configs.RobotConstants.armBucket;
import com.qualcomm.robotcore.hardware.HardwareMap;
import com.qualcomm.robotcore.hardware.ServoImplEx;
import org.firstinspires.ftc.teamcode.util.action.Actions;
import org.firstinspires.ftc.teamcode.util.action.RunAction;
public class ArmSubsystem {
public enum ArmState {
PARK, ENGAGE, BUCKET
}
public ServoImplEx arm;
public ArmState state;
public RunAction engageArm, parkArm, bucketArm;
public ArmSubsystem(HardwareMap hardwareMap, ArmState armState) {
arm = hardwareMap.get(ServoImplEx.class, "arm-servo");
arm.resetDeviceConfigurationForOpMode();
this.state = armState;
parkArm = new RunAction(this::parkArm);
engageArm = new RunAction(this::engageArm);
bucketArm = new RunAction(this::bucketArm);
}
public void setState(ArmState armState) {
if (armState == ArmState.ENGAGE) {
arm.setPosition(armEngage);
this.state = ArmState.ENGAGE;
} else if (armState == ArmState.PARK) {
arm.setPosition(armPark);
this.state = ArmState.PARK;
} else if (armState == ArmState.BUCKET) {
arm.setPosition(armBucket);
this.state = ArmState.BUCKET;
}
}
public void engageArm() {
setState(ArmState.ENGAGE);
}
public void parkArm() {
setState(ArmState.PARK);
}
public void bucketArm() {
setState(ArmState.BUCKET);
}
public void switchState() {
if (state == ArmState.ENGAGE) {
setState(ArmState.PARK);
} else if (state == ArmState.PARK) {
setState(ArmState.BUCKET);
} else if (state == ArmState.BUCKET) {
setState(ArmState.ENGAGE);
}
}
public ArmState getState() {
return this.state;
}
public void init() {
Actions.runBlocking(parkArm);
}
public void start() {
Actions.runBlocking(parkArm);
}
public double getPosition() {
return this.arm.getPosition();
}
public void setPosition(double position) {
this.arm.setPosition(position);
}
}

View File

@ -0,0 +1,67 @@
package org.firstinspires.ftc.teamcode.subsystem;
import com.qualcomm.robotcore.hardware.HardwareMap;
import com.qualcomm.robotcore.hardware.Servo;
import org.firstinspires.ftc.teamcode.util.action.Actions;
import org.firstinspires.ftc.teamcode.util.action.RunAction;
import static org.firstinspires.ftc.teamcode.configs.RobotConstants.clawOpen;
import static org.firstinspires.ftc.teamcode.configs.RobotConstants.clawClose;
public class ClawSubsystem {
public enum ClawState {
CLOSED, OPEN
}
private Servo claw;
private ClawState state;
public RunAction openClaw, closeClaw;
public ClawSubsystem(HardwareMap hardwareMap, ClawState clawState) {
claw = hardwareMap.get(Servo.class, "claw-servo");
this.state = clawState;
openClaw = new RunAction(this::openClaw);
closeClaw = new RunAction(this::closeClaw);
}
public void setState(ClawState clawState) {
if (clawState == ClawState.CLOSED) {
claw.setPosition(clawClose);
this.state = ClawState.CLOSED;
} else if (clawState == ClawState.OPEN) {
claw.setPosition(clawOpen);
this.state = ClawState.OPEN;
}
}
public ClawState getState() {
return this.state;
}
public void switchState() {
if (state == ClawState.CLOSED) {
setState(ClawState.OPEN);
} else if (state == ClawState.OPEN) {
setState(ClawState.CLOSED);
}
}
public void openClaw() {
setState(ClawState.OPEN);
}
public void closeClaw() {
setState(ClawState.CLOSED);
}
public void init() {
Actions.runBlocking(closeClaw);
}
public void start() {
Actions.runBlocking(closeClaw);
}
}

View File

@ -0,0 +1,94 @@
package org.firstinspires.ftc.teamcode.subsystem;
import static org.firstinspires.ftc.teamcode.configs.RobotConstants.liftPower;
import static org.firstinspires.ftc.teamcode.configs.RobotConstants.liftToFloatPos;
import static org.firstinspires.ftc.teamcode.configs.RobotConstants.liftToFloorPos;
import static org.firstinspires.ftc.teamcode.configs.RobotConstants.liftToHighBucketPos;
import static org.firstinspires.ftc.teamcode.configs.RobotConstants.liftToLowBucketPos;
import static org.firstinspires.ftc.teamcode.configs.RobotConstants.liftToHoverState;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DcMotorSimple;
import com.qualcomm.robotcore.hardware.HardwareMap;
import org.firstinspires.ftc.teamcode.util.action.RunAction;
public class LiftSubsystem {
public DcMotor lift;
public RunAction toFloor, toLowBucket, toHighBucket;
public enum LiftState {
FLOOR, LOW_BUCKET, HIGH_BUCKET, FLOAT, HOVER
}
private LiftState liftState;
public LiftSubsystem(HardwareMap hardwareMap) {
lift = hardwareMap.get(DcMotor.class, "lift-motor");
toFloor = new RunAction(this::toFloor);
toLowBucket = new RunAction(this::toLowBucket);
toHighBucket = new RunAction(this::toHighBucket);
}
public void setTarget(int b) {
lift.setTargetPosition(b);
lift.setMode(DcMotor.RunMode.RUN_TO_POSITION);
}
public void switchState() {
if (this.liftState == LiftState.FLOOR) {
this.toFloor();
} else if (this.liftState == LiftState.FLOAT) {
this.toLowBucket();
} else if (this.liftState == LiftState.LOW_BUCKET) {
this.toHighBucket();
} else if (this.liftState == LiftState.HIGH_BUCKET) {
this.toFloor();
}
}
public void toHover() {
this.setTarget(liftToHoverState);
this.setState(LiftState.HOVER);
}
public void toFloor() {
this.setTarget(liftToFloorPos);
this.setState(LiftState.FLOOR);
}
public void toFloat() {
this.setTarget(liftToFloatPos);
this.setState(LiftState.FLOAT);
}
public void toLowBucket() {
this.setTarget(liftToLowBucketPos);
this.setState(LiftState.LOW_BUCKET);
}
public void toHighBucket() {
this.setTarget(liftToHighBucketPos);
this.setState(LiftState.HIGH_BUCKET);
}
public void init() {
lift.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
lift.setDirection(DcMotorSimple.Direction.REVERSE);
lift.setPower(liftPower);
}
private void setState(LiftState liftState) {
this.liftState = liftState;
}
public int getPosition() {
return lift.getCurrentPosition();
}
public void start() {
this.toFloor();
}
}

View File

@ -0,0 +1,130 @@
package org.firstinspires.ftc.teamcode.subsystem;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR_DIRECTION;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.Gamepad;
import com.qualcomm.robotcore.hardware.HardwareMap;
import org.firstinspires.ftc.robotcore.external.Telemetry;
public class MotorsSubsystem {
public HardwareMap hardwareMap;
public Telemetry telemetry;
public DcMotor frontLeftMotor;
public DcMotor backLeftMotor;
public DcMotor frontRightMotor;
public DcMotor backRightMotor;
public enum TravelState {
PARKED, BUCKET, SUBMARINE
}
public TravelState travelState;
public double power;
public MotorsSubsystem(HardwareMap hardwareMap, Telemetry telemetry) {
this.hardwareMap = hardwareMap;
this.telemetry = telemetry;
this.power = 1.0;
}
public MotorsSubsystem(HardwareMap hardwareMap, Telemetry telemetry, double power) {
this.hardwareMap = hardwareMap;
this.telemetry = telemetry;
this.power = power;
}
public void init() {
frontLeftMotor = hardwareMap.get(DcMotor.class, FRONT_LEFT_MOTOR);
backLeftMotor = hardwareMap.get(DcMotor.class, BACK_LEFT_MOTOR);
frontRightMotor = hardwareMap.get(DcMotor.class, FRONT_RIGHT_MOTOR);
backRightMotor = hardwareMap.get(DcMotor.class, BACK_RIGHT_MOTOR);
frontLeftMotor.setDirection(FRONT_LEFT_MOTOR_DIRECTION);
backLeftMotor.setDirection(BACK_LEFT_MOTOR_DIRECTION);
frontRightMotor.setDirection(FRONT_RIGHT_MOTOR_DIRECTION);
backRightMotor.setDirection(BACK_RIGHT_MOTOR_DIRECTION);
frontLeftMotor.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
backLeftMotor.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
frontRightMotor.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
backRightMotor.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
}
public void setFrontLeftMotorPower(double power) {
frontLeftMotor.setPower(power);
}
public void setBackLeftMotorPower(double power) {
backLeftMotor.setPower(power);
}
public void setFrontRightMotorPower(double power) {
frontRightMotor.setPower(power);
}
public void setBackRightMotorPower(double power) {
backRightMotor.setPower(power);
}
public void calculateTrajectory(Gamepad gamepad1) {
double max;
// POV Mode uses left joystick to go forward & strafe, and right joystick to rotate.
double axial = -gamepad1.left_stick_y; // Note: pushing stick forward gives negative value
double lateral = gamepad1.left_stick_x;
double yaw = gamepad1.right_stick_x;
// Combine the joystick requests for each axis-motion to determine each wheel's power.
// Set up a variable for each drive wheel to save the power level for telemetry.
double leftFrontPower = axial + lateral + yaw;
double leftBackPower = axial - lateral + yaw;
double rightFrontPower = axial - lateral - yaw;
double rightBackPower = axial + lateral - yaw;
// Normalize the values so no wheel power exceeds 100%
// This ensures that the robot maintains the desired motion.
max = Math.max(Math.abs(leftFrontPower), Math.abs(rightFrontPower));
max = Math.max(max, Math.abs(leftBackPower));
max = Math.max(max, Math.abs(rightBackPower));
if (max > 1.0) {
leftFrontPower /= max;
rightFrontPower /= max;
leftBackPower /= max;
rightBackPower /= max;
}
// Send calculated power to wheels
this.setFrontLeftMotorPower(leftFrontPower * this.power);
this.setFrontRightMotorPower(rightFrontPower * this.power);
this.setBackLeftMotorPower(leftBackPower * this.power);
this.setBackRightMotorPower(rightBackPower * this.power);
// Show the elapsed game time and wheel power.
this.telemetry.addData("Front left/Right", "%4.2f, %4.2f", leftFrontPower, rightFrontPower);
this.telemetry.addData("Back left/Right", "%4.2f, %4.2f", leftBackPower, rightBackPower);
this.telemetry.update();
}
public void setState(TravelState travelState) {
this.travelState = travelState;
}
public TravelState getState() {
return this.travelState;
}
}

View File

@ -0,0 +1,79 @@
package org.firstinspires.ftc.teamcode.subsystem;
import static org.firstinspires.ftc.teamcode.configs.RobotConstants.wristBucket;
import static org.firstinspires.ftc.teamcode.configs.RobotConstants.wristFloor;
import com.qualcomm.robotcore.hardware.HardwareMap;
import com.qualcomm.robotcore.hardware.ServoImplEx;
import org.firstinspires.ftc.teamcode.util.action.Actions;
import org.firstinspires.ftc.teamcode.util.action.RunAction;
public class WristSubsystem {
public enum WristState {
FLOOR, BUCKET
}
public ServoImplEx wrist;
public WristState state;
public RunAction floorWrist, bucketWrist;
public WristSubsystem(HardwareMap hardwareMap, WristState wristState) {
wrist = hardwareMap.get(ServoImplEx.class, "wrist-servo");
wrist.resetDeviceConfigurationForOpMode();
this.state = wristState;
bucketWrist = new RunAction(this::bucketWrist);
floorWrist = new RunAction(this::floorWrist);
}
public void setState(WristState wristState) {
if (wristState == WristState.FLOOR) {
wrist.setPosition(wristFloor);
this.state = WristState.FLOOR;
} else if (wristState == WristState.BUCKET) {
wrist.setPosition(wristBucket);
this.state = WristState.BUCKET;
}
}
public void floorWrist() {
setState(WristState.FLOOR);
}
public void bucketWrist() {
setState(WristState.BUCKET);
}
public void switchState() {
if (state == WristState.FLOOR) {
setState(WristState.BUCKET);
} else if (state == WristState.BUCKET) {
setState(WristState.FLOOR);
}
}
public WristState getState() {
return this.state;
}
public void init() {
Actions.runBlocking(floorWrist);
}
public void start() {
Actions.runBlocking(floorWrist);
}
public double getPosition() {
return this.wrist.getPosition();
}
public void setPosition(double position) {
this.wrist.setPosition(position);
}
}

View File

@ -0,0 +1,11 @@
package org.firstinspires.ftc.teamcode.util.action;
import com.acmerobotics.dashboard.canvas.Canvas;
import com.acmerobotics.dashboard.telemetry.TelemetryPacket;
public interface Action {
boolean run(TelemetryPacket p);
default void preview(Canvas fieldOverlay) {
}
}

View File

@ -0,0 +1,24 @@
package org.firstinspires.ftc.teamcode.util.action;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.canvas.Canvas;
import com.acmerobotics.dashboard.telemetry.TelemetryPacket;
public class Actions {
public static void runBlocking(Action a) {
FtcDashboard dash = FtcDashboard.getInstance();
Canvas c = new Canvas();
a.preview(c);
boolean b = true;
while (b && !Thread.currentThread().isInterrupted()) {
TelemetryPacket p = new TelemetryPacket();
p.fieldOverlay().getOperations().addAll(c.getOperations());
b = a.run(p);
dash.sendTelemetryPacket(p);
}
}
}

View File

@ -0,0 +1,39 @@
package org.firstinspires.ftc.teamcode.util.action;
import com.acmerobotics.dashboard.config.Config;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
@Config
public class FieldConstants {
public enum RobotStart {
BLUE_BUCKET,
BLUE_OBSERVATION,
RED_BUCKET,
RED_OBSERVATION
}
public static final Pose blueBucketStartPose = new Pose(8, 79.5, Math.toRadians(180));
public static final Pose blueObservationStartPose = new Pose(8, 36, Math.toRadians(180));
public static final Pose redBucketStartPose = new Pose(144-8, 79.5, 0);
public static final Pose redObservationStartPose = new Pose(144-8, 36, 0);
// Blue Preload Poses
public static final Pose blueBucketPreloadPose = new Pose(34.5, 79.5, Math.toRadians(180));
// Blue Bucket Sample Poses
public static final Pose blueBucketLeftSamplePose = new Pose(34.75, 113.5, Math.toRadians(66));
public static final Pose blueBucketLeftSampleControlPose = new Pose(32, 108);
public static final Pose blueBucketMidSamplePose = new Pose(33, 125.5, Math.toRadians(73));
public static final Pose blueBucketMidSampleControlPose = new Pose(47.5, 110);
public static final Pose blueBucketRightSamplePose = new Pose(33, 133, Math.toRadians(74));
public static final Pose blueBucketRightSampleControlPose = new Pose(46, 101);
public static final Pose blueBucketScorePose = new Pose(16, 128, Math.toRadians(-45));
public static final Pose blueBucketParkPose = new Pose(65, 97.75, Math.toRadians(90));
public static final Pose blueBucketParkControlPose = new Pose(60.25, 123.5);
}

View File

@ -0,0 +1,30 @@
package org.firstinspires.ftc.teamcode.util.action;
import com.acmerobotics.dashboard.telemetry.TelemetryPacket;
public class RunAction implements Action {
private final Runnable runnable;
private Runnable callback;
public RunAction(Runnable runnable) {
this.runnable = runnable;
}
public void runAction() {
runnable.run();
if (callback != null) {
callback.run();
}
}
public void setCallback(Runnable callback) {
this.callback = callback;
}
// Adapter to make Action compatible with the Action interface
public boolean run(TelemetryPacket p) {
runAction();
return false; // Regular actions complete after one execution
}
}

View File

@ -0,0 +1,43 @@
package org.firstinspires.ftc.teamcode.util.action;
import com.acmerobotics.dashboard.canvas.Canvas;
import com.acmerobotics.dashboard.telemetry.TelemetryPacket;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class SequentialAction implements Action {
private List<Action> actions;
public SequentialAction(List<Action> actions) {
this.actions = new ArrayList<>(actions);
}
public SequentialAction(Action... actions) {
this(Arrays.asList(actions));
}
@Override
public boolean run(TelemetryPacket p) {
if (actions.isEmpty()) {
return false;
}
if (actions.get(0).run(p)) {
return true;
} else {
actions.remove(0);
return run(p);
}
}
@Override
public void preview(Canvas fieldOverlay) {
for (Action a : actions) {
a.preview(fieldOverlay);
}
}
}

View File

@ -0,0 +1,32 @@
package org.firstinspires.ftc.teamcode.util.action;
import com.acmerobotics.dashboard.telemetry.TelemetryPacket;
import java.util.Timer;
import java.util.TimerTask;
public class SleepAction implements Action {
private final double dt;
private boolean isFinished = false;
public SleepAction(double dt) {
this.dt = dt;
}
@Override
public boolean run(TelemetryPacket p) {
if (!isFinished) {
Timer timer = new Timer();
timer.schedule(new TimerTask() {
@Override
public void run() {
isFinished = true;
}
}, (long) (dt * 1000));
} else {
isFinished = false; // Reset the flag after sleep is complete
return false; // Indicate that the action is finished
}
return true; // Indicate that the action is still running
}
}