25 Commits

Author SHA1 Message Date
a933487ce0 Merge branch 'branch-rc-chassis-14493' into branch-black-14493 2024-10-21 22:12:43 -07:00
5cec300e58 Upgrade libs to 10.1 2024-10-21 21:56:23 -07:00
00146b2e40 Currently working with Pedro Pathing and tuned as of this date. 2024-10-21 21:54:09 -07:00
2e1dbddba6 Boolean clarification 2024-10-21 21:51:04 -07:00
ba5e1e6fe4 Committing translational and heading PID 2024-10-20 19:03:52 -07:00
a64a558f2f Commit tune in progress 2024-10-20 17:23:31 -07:00
99099bf78f Changing paths a bit, 3-wheel w/o IMU. This checks out 2024-10-20 17:08:05 -07:00
5d94363715 Basic configuration steps 2024-10-17 12:18:56 -07:00
0c8db615eb Merge remote-tracking branch 'origin/branch-black-14493' into branch-black-14493 2024-10-17 11:12:46 -07:00
afb39ae3cc Add sample driving file 2024-10-17 11:12:34 -07:00
46bece8209 YOLO 360 no scope booyah 2024-10-15 16:08:17 -07:00
3e3d9bbcff Something something arm stuff 2024-10-15 16:05:03 -07:00
ff52114f9b work in progress sidearm 2024-10-01 15:46:15 -07:00
efd3302645 Outstanding robot 2024-09-26 16:16:10 -07:00
a7f060c3eb Add initial code 2024-09-24 17:10:22 -07:00
156423422c Latest configurations for black competition robot 2024-09-19 17:17:53 -07:00
e534f46efb Added IMU direction 2024-09-17 18:55:37 -07:00
fce14b3753 Added more variables to Constants file 2024-09-17 18:46:26 -07:00
4ed1c8c615 Tuned localizer for Competition Robot 2024-09-17 17:16:31 -07:00
2594ff79ca Update values for Competition robot 2024-09-17 15:56:40 -07:00
fa49b48441 Incorporate static class variables for ease of modification 2024-09-16 07:48:17 -07:00
d9d0f11de7 A bit of format changes 2024-09-14 12:19:44 -07:00
4dc7b493fa Added more static entries for ease of configuration 2024-09-14 12:16:06 -07:00
a149909e82 Added more useful links 2024-09-14 12:15:49 -07:00
dbe9c76ee6 Renamed README markdown 2024-09-14 12:15:41 -07:00
21 changed files with 960 additions and 88 deletions

View File

@ -0,0 +1,27 @@
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.Servo;
public class ServoPractice extends OpMode {
//servo
Servo test_servo;
public void init(){
//hw map
test_servo = hardwareMap.get(Servo.class, "test_servo");
}
public void loop(){
//make it move
test_servo.setPosition(0);
try {
Thread.sleep(500);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
test_servo.setPosition(1);
}
public void stop(){
}
}

View File

@ -0,0 +1,122 @@
package org.firstinspires.ftc.teamcode;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.config.Config;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
/**
* This is the Circle autonomous OpMode. It runs the robot in a PathChain that's actually not quite
* a circle, but some Bezier curves that have control points set essentially in a square. However,
* it turns enough to tune your centripetal force correction and some of your heading. Some lag in
* heading is to be expected.
*
* @author Anyi Lin - 10158 Scott's Bots
* @author Aaron Yang - 10158 Scott's Bots
* @author Harrison Womack - 10158 Scott's Bots
* @version 1.0, 3/12/2024
*/
@Config
@Autonomous(name = "AutoExample", group = "Autonomous Pathing Tuning")
public class AutoExample extends OpMode {
private Telemetry telemetryA;
private Follower follower;
private PathChain path;
private final Pose startPose = new Pose(12.0, 11, 90);
/**
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
* initializes the FTC Dashboard telemetry.
*/
@Override
public void init() {
follower = new Follower(hardwareMap);
follower.setMaxPower(.6);
follower.setStartingPose(startPose);
path = follower.pathBuilder()
.addPath(
// Line 1
new BezierLine(
new Point(12.804, 11.223, Point.CARTESIAN),
new Point(12.804, 42.362, Point.CARTESIAN)
)
)
.setTangentHeadingInterpolation()
.addPath(
// Line 2
new BezierCurve(
new Point(12.804, 42.362, Point.CARTESIAN),
new Point(11.381, 57.379, Point.CARTESIAN),
new Point(31.614, 56.588, Point.CARTESIAN)
)
)
.setTangentHeadingInterpolation()
.addPath(
// Line 3
new BezierLine(
new Point(31.614, 56.588, Point.CARTESIAN),
new Point(51.214, 56.746, Point.CARTESIAN)
)
)
.setTangentHeadingInterpolation()
.addPath(
// Line 4
new BezierCurve(
new Point(51.214, 56.746, Point.CARTESIAN),
new Point(64.334, 58.643, Point.CARTESIAN),
new Point(61.172, 45.524, Point.CARTESIAN)
)
)
.setTangentHeadingInterpolation()
.addPath(
// Line 5
new BezierCurve(
new Point(61.172, 45.524, Point.CARTESIAN),
new Point(36.198, 26.239, Point.CARTESIAN),
new Point(19.759, 11.065, Point.CARTESIAN)
)
)
.setTangentHeadingInterpolation()
.build();
follower.followPath(path);
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
telemetryA.update();
}
/**
* This runs the OpMode, updating the Follower as well as printing out the debug statements to
* the Telemetry, as well as the FTC Dashboard.
*/
@Override
public void loop() {
follower.update();
if (follower.atParametricEnd()) {
follower.followPath(path);
}
follower.telemetryDebug(telemetryA);
}
}

View File

@ -0,0 +1,95 @@
package org.firstinspires.ftc.teamcode;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.config.Config;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
/**
* This is the Circle autonomous OpMode. It runs the robot in a PathChain that's actually not quite
* a circle, but some Bezier curves that have control points set essentially in a square. However,
* it turns enough to tune your centripetal force correction and some of your heading. Some lag in
* heading is to be expected.
*
* @author Anyi Lin - 10158 Scott's Bots
* @author Aaron Yang - 10158 Scott's Bots
* @author Harrison Womack - 10158 Scott's Bots
* @version 1.0, 3/12/2024
*/
@Config
@Autonomous(name = "AutoExampleTwo", group = "Autonomous Pathing Tuning")
public class AutoExampleTwo extends OpMode {
private Telemetry telemetryA;
private Follower follower;
private PathChain path;
private final Pose startPose = new Pose(10.0, 40, 90);
/**
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
* initializes the FTC Dashboard telemetry.
*/
@Override
public void init() {
follower = new Follower(hardwareMap);
follower.setMaxPower(.4);
follower.setStartingPose(startPose);
path = follower.pathBuilder()
.addPath(
// Line 1
new BezierLine(
new Point(10.000, 40.000, Point.CARTESIAN),
new Point(60.000, 40.000, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 2
new BezierLine(
new Point(60.000, 40.000, Point.CARTESIAN),
new Point(60.000, 25.000, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 3
new BezierLine(
new Point(60.000, 25.000, Point.CARTESIAN),
new Point(10.000, 25.000, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90)).build();
follower.followPath(path);
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
telemetryA.update();
}
/**
* This runs the OpMode, updating the Follower as well as printing out the debug statements to
* the Telemetry, as well as the FTC Dashboard.
*/
@Override
public void loop() {
follower.update();
if (follower.atParametricEnd()) {
follower.followPath(path);
}
follower.telemetryDebug(telemetryA);
}
}

View File

@ -0,0 +1,230 @@
/* Copyright (c) 2021 FIRST. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided that
* the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.firstinspires.ftc.teamcode;
<<<<<<< HEAD
=======
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_ENCODER_DIRECTION;
>>>>>>> branch-rc-chassis-14493
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR_DIRECTION;
<<<<<<< HEAD
=======
import static org.firstinspires.ftc.teamcode.PedroConstants.LEFT_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.LEFT_ENCODER_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.RIGHT_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.RIGHT_ENCODER_DIRECTION;
>>>>>>> branch-rc-chassis-14493
import com.qualcomm.robotcore.eventloop.opmode.Disabled;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.hardware.DcMotor;
<<<<<<< HEAD
import com.qualcomm.robotcore.util.ElapsedTime;
=======
import com.qualcomm.robotcore.hardware.DcMotorEx;
import com.qualcomm.robotcore.util.ElapsedTime;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Encoder;
>>>>>>> branch-rc-chassis-14493
/*
* This file contains an example of a Linear "OpMode".
* An OpMode is a 'program' that runs in either the autonomous or the teleop period of an FTC match.
* The names of OpModes appear on the menu of the FTC Driver Station.
* When a selection is made from the menu, the corresponding OpMode is executed.
*
* This particular OpMode illustrates driving a 4-motor Omni-Directional (or Holonomic) robot.
* This code will work with either a Mecanum-Drive or an X-Drive train.
* Both of these drives are illustrated at https://gm0.org/en/latest/docs/robot-design/drivetrains/holonomic.html
* Note that a Mecanum drive must display an X roller-pattern when viewed from above.
*
* Also note that it is critical to set the correct rotation direction for each motor. See details below.
*
* Holonomic drives provide the ability for the robot to move in three axes (directions) simultaneously.
* Each motion axis is controlled by one Joystick axis.
*
* 1) Axial: Driving forward and backward Left-joystick Forward/Backward
* 2) Lateral: Strafing right and left Left-joystick Right and Left
* 3) Yaw: Rotating Clockwise and counter clockwise Right-joystick Right and Left
*
* This code is written assuming that the right-side motors need to be reversed for the robot to drive forward.
* When you first test your robot, if it moves backward when you push the left stick forward, then you must flip
* the direction of all 4 motors (see code below).
*
* Use Android Studio to Copy this Class, and Paste it into your team's code folder with a new name.
* Remove or comment out the @Disabled line to add this OpMode to the Driver Station OpMode list
*/
@TeleOp(name="Basic: Omni Linear OpMode", group="Linear OpMode")
public class BasicOmniOpMode_Linear extends LinearOpMode {
// Declare OpMode members for each of the 4 motors.
<<<<<<< HEAD
private ElapsedTime runtime = new ElapsedTime();
private DcMotor leftFrontDrive = null;
private DcMotor leftBackDrive = null;
private DcMotor rightFrontDrive = null;
private DcMotor rightBackDrive = null;
=======
private final ElapsedTime runtime = new ElapsedTime();
>>>>>>> branch-rc-chassis-14493
@Override
public void runOpMode() {
// Initialize the hardware variables. Note that the strings used here must correspond
// to the names assigned during the robot configuration step on the DS or RC devices.
<<<<<<< HEAD
leftFrontDrive = hardwareMap.get(DcMotor.class, FRONT_LEFT_MOTOR);
leftBackDrive = hardwareMap.get(DcMotor.class, BACK_LEFT_MOTOR);
rightFrontDrive = hardwareMap.get(DcMotor.class, FRONT_RIGHT_MOTOR);
rightBackDrive = hardwareMap.get(DcMotor.class, BACK_RIGHT_MOTOR);
=======
DcMotor leftFrontDrive = hardwareMap.get(DcMotor.class, FRONT_LEFT_MOTOR);
DcMotor leftBackDrive = hardwareMap.get(DcMotor.class, BACK_LEFT_MOTOR);
DcMotor rightFrontDrive = hardwareMap.get(DcMotor.class, FRONT_RIGHT_MOTOR);
DcMotor rightBackDrive = hardwareMap.get(DcMotor.class, BACK_RIGHT_MOTOR);
// TODO: replace these with your encoder ports
Encoder leftEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, LEFT_ENCODER));
Encoder rightEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, RIGHT_ENCODER));
Encoder strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_ENCODER));
// TODO: reverse any encoders necessary
leftEncoder.setDirection(LEFT_ENCODER_DIRECTION);
rightEncoder.setDirection(RIGHT_ENCODER_DIRECTION);
strafeEncoder.setDirection(BACK_ENCODER_DIRECTION);
>>>>>>> branch-rc-chassis-14493
// ########################################################################################
// !!! IMPORTANT Drive Information. Test your motor directions. !!!!!
// ########################################################################################
// Most robots need the motors on one side to be reversed to drive forward.
// The motor reversals shown here are for a "direct drive" robot (the wheels turn the same direction as the motor shaft)
// If your robot has additional gear reductions or uses a right-angled drive, it's important to ensure
// that your motors are turning in the correct direction. So, start out with the reversals here, BUT
// when you first test your robot, push the left joystick forward and observe the direction the wheels turn.
// Reverse the direction (flip FORWARD <-> REVERSE ) of any wheel that runs backward
// Keep testing until ALL the wheels move the robot forward when you push the left joystick forward.
leftFrontDrive.setDirection(FRONT_LEFT_MOTOR_DIRECTION);
leftBackDrive.setDirection(BACK_LEFT_MOTOR_DIRECTION);
rightFrontDrive.setDirection(FRONT_RIGHT_MOTOR_DIRECTION);
rightBackDrive.setDirection(BACK_RIGHT_MOTOR_DIRECTION);
// Wait for the game to start (driver presses START)
telemetry.addData("Status", "Initialized");
<<<<<<< HEAD
=======
telemetry.addData("Left Encoder Value", leftEncoder.getDeltaPosition());
telemetry.addData("Right Encoder Value", rightEncoder.getDeltaPosition());
telemetry.addData("Strafe Encoder Value", strafeEncoder.getDeltaPosition());
>>>>>>> branch-rc-chassis-14493
telemetry.update();
waitForStart();
runtime.reset();
// run until the end of the match (driver presses STOP)
while (opModeIsActive()) {
double max;
// POV Mode uses left joystick to go forward & strafe, and right joystick to rotate.
double axial = -gamepad1.left_stick_y; // Note: pushing stick forward gives negative value
double lateral = gamepad1.left_stick_x;
double yaw = gamepad1.right_stick_x;
// Combine the joystick requests for each axis-motion to determine each wheel's power.
// Set up a variable for each drive wheel to save the power level for telemetry.
double leftFrontPower = axial + lateral + yaw;
double rightFrontPower = axial - lateral - yaw;
double leftBackPower = axial - lateral + yaw;
double rightBackPower = axial + lateral - yaw;
// Normalize the values so no wheel power exceeds 100%
// This ensures that the robot maintains the desired motion.
max = Math.max(Math.abs(leftFrontPower), Math.abs(rightFrontPower));
max = Math.max(max, Math.abs(leftBackPower));
max = Math.max(max, Math.abs(rightBackPower));
if (max > 1.0) {
leftFrontPower /= max;
rightFrontPower /= max;
leftBackPower /= max;
rightBackPower /= max;
}
// This is test code:
//
// Uncomment the following code to test your motor directions.
// Each button should make the corresponding motor run FORWARD.
// 1) First get all the motors to take to correct positions on the robot
// by adjusting your Robot Configuration if necessary.
// 2) Then make sure they run in the correct direction by modifying the
// the setDirection() calls above.
// Once the correct motors move in the correct direction re-comment this code.
/*
leftFrontPower = gamepad1.x ? 1.0 : 0.0; // X gamepad
leftBackPower = gamepad1.a ? 1.0 : 0.0; // A gamepad
rightFrontPower = gamepad1.y ? 1.0 : 0.0; // Y gamepad
rightBackPower = gamepad1.b ? 1.0 : 0.0; // B gamepad
*/
// Send calculated power to wheels
leftFrontDrive.setPower(leftFrontPower);
rightFrontDrive.setPower(rightFrontPower);
leftBackDrive.setPower(leftBackPower);
rightBackDrive.setPower(rightBackPower);
// Show the elapsed game time and wheel power.
telemetry.addData("Status", "Run Time: " + runtime.toString());
telemetry.addData("Front left/Right", "%4.2f, %4.2f", leftFrontPower, rightFrontPower);
telemetry.addData("Back left/Right", "%4.2f, %4.2f", leftBackPower, rightBackPower);
<<<<<<< HEAD
=======
telemetry.addData("Left Encoder Value", leftEncoder.getDeltaPosition());
telemetry.addData("Right Encoder Value", rightEncoder.getDeltaPosition());
telemetry.addData("Strafe Encoder Value", strafeEncoder.getDeltaPosition());
>>>>>>> branch-rc-chassis-14493
telemetry.update();
}
}}

View File

@ -0,0 +1,73 @@
package org.firstinspires.ftc.teamcode;
import com.qualcomm.hardware.rev.RevHubOrientationOnRobot;
import com.qualcomm.robotcore.hardware.DcMotorSimple.Direction;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Encoder;
public class PedroConstants {
/*
Robot parameters
*/
// Turn localizer - -0.003
// Robot motor configurations
public static final String FRONT_LEFT_MOTOR = "Drive front lt";
public static final String BACK_LEFT_MOTOR = "Drive back lt";
public static final String FRONT_RIGHT_MOTOR = "Drive front rt";
public static final String BACK_RIGHT_MOTOR = "Drive back rt";
// Robot motor direction
public static final Direction FRONT_LEFT_MOTOR_DIRECTION = Direction.REVERSE;
public static final Direction BACK_LEFT_MOTOR_DIRECTION = Direction.REVERSE;
public static final Direction FRONT_RIGHT_MOTOR_DIRECTION = Direction.FORWARD;
public static final Direction BACK_RIGHT_MOTOR_DIRECTION = Direction.FORWARD;
// Robot IMU configuration
public static final String IMU = "imu";
// Robot IMU placement
public static final RevHubOrientationOnRobot.LogoFacingDirection IMU_LOGO_FACING_DIRECTION
= RevHubOrientationOnRobot.LogoFacingDirection.DOWN;
public static final RevHubOrientationOnRobot.UsbFacingDirection IMU_USB_FACING_DIRECTION
= RevHubOrientationOnRobot.UsbFacingDirection.LEFT;
// Robot encoders
public static final String LEFT_ENCODER = "encoder left";
public static final String RIGHT_ENCODER = "encoder right";
public static final String BACK_ENCODER = "encoder back";
// Robot encoder direction
public static final double LEFT_ENCODER_DIRECTION = Encoder.REVERSE;
public static final double RIGHT_ENCODER_DIRECTION = Encoder.FORWARD;
public static final double BACK_ENCODER_DIRECTION = Encoder.FORWARD;
/*
Pedro's parameters
*/
// -0.0708
// The weight of the robot in Kilograms
public static final double ROBOT_WEIGHT_IN_KG = 10.5;
// Maximum velocity of the robot going forward
public static final double ROBOT_SPEED_FORWARD = 51.4598;
// Maximum velocity of the robot going right
public static final double ROBOT_SPEED_LATERAL = 28.7119;
// Rate of deceleration when power is cut-off when the robot is moving forward
public static final double FORWARD_ZERO_POWER_ACCEL = -57.805;
// Rate of deceleration when power is cut-off when the robot is moving to the right
public static final double LATERAL_ZERO_POWER_ACCEL = -99.672;
// Determines how fast your robot will decelerate as a factor of how fast your robot will coast to a stop
public static final double ZERO_POWER_ACCEL_MULT = 3.5;
/* Centripetal force correction - increase if robot is correcting into the path
- decrease if robot is correcting away from the path */
public static final double CENTRIPETAL_SCALING = 0.0004;
}

View File

@ -1,36 +0,0 @@
package org.firstinspires.ftc.teamcode;
public class PedrosConstants {
// Robot motor configurations
public static final String FRONT_LEFT_MOTOR = "Drive front lt";
public static final String BACK_LEFT_MOTOR = "Drive back lt";
public static final String FRONT_RIGHT_MOTOR = "Drive front rt";
public static final String BACK_RIGHT_MOTOR = "Drive back rt";
/*
Pedro's parameters
*/
// The weight of the robot in Kilograms
public static final double ROBOT_WEIGHT_IN_KG = 10.65942;
// Maximum velocity of the robot going forward
public static final double ROBOT_SPEED_FORWARD = 81.34056;
// Maximum velocity of the robot going right
public static final double ROBOT_SPEED_LATERAL = 65.43028;
// Rate of deceleration when power is cut-off when the robot is moving forward
public static final double FORWARD_ZERO_POWER_ACCEL = -34.62719;
// Rate of deceleration when power is cut-off when the robot is moving to the right
public static final double LATERAL_ZERO_POWER_ACCEL = -78.15554;
// Determines how fast your robot will decelerate as a factor of how fast your robot will coast to a stop
public static final double ZERO_POWER_ACCEL_MULT = 4;
/* Centripetal force correction - increase if robot is correcting into the path
- decrease if robot is correcting away from the path */
public static final double CENTRIPETAL_SCALING = 0.0005;
}

View File

@ -0,0 +1,171 @@
/* Copyright (c) 2022 FIRST. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided that
* the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.firstinspires.ftc.teamcode;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_ENCODER_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.IMU_LOGO_FACING_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.IMU_USB_FACING_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.LEFT_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.LEFT_ENCODER_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.RIGHT_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.RIGHT_ENCODER_DIRECTION;
import com.qualcomm.hardware.rev.RevHubOrientationOnRobot;
import com.qualcomm.robotcore.eventloop.opmode.Disabled;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import com.qualcomm.robotcore.hardware.IMU;
import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
import org.firstinspires.ftc.robotcore.external.navigation.AngularVelocity;
import org.firstinspires.ftc.robotcore.external.navigation.YawPitchRollAngles;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Encoder;
/*
* This OpMode shows how to use the new universal IMU interface. This
* interface may be used with the BNO055 IMU or the BHI260 IMU. It assumes that an IMU is configured
* on the robot with the name "imu".
*
* The sample will display the current Yaw, Pitch and Roll of the robot.<br>
* With the correct orientation parameters selected, pitch/roll/yaw should act as follows:
* Pitch value should INCREASE as the robot is tipped UP at the front. (Rotation about X) <br>
* Roll value should INCREASE as the robot is tipped UP at the left side. (Rotation about Y) <br>
* Yaw value should INCREASE as the robot is rotated Counter Clockwise. (Rotation about Z) <br>
*
* The yaw can be reset (to zero) by pressing the Y button on the gamepad (Triangle on a PS4 controller)
*
* This specific sample assumes that the Hub is mounted on one of the three orthogonal planes
* (X/Y, X/Z or Y/Z) and that the Hub has only been rotated in a range of 90 degree increments.
*
* Note: if your Hub is mounted on a surface angled at some non-90 Degree multiple (like 30) look at
* the alternative SensorIMUNonOrthogonal sample in this folder.
*
* This "Orthogonal" requirement means that:
*
* 1) The Logo printed on the top of the Hub can ONLY be pointing in one of six directions:
* FORWARD, BACKWARD, UP, DOWN, LEFT and RIGHT.
*
* 2) The USB ports can only be pointing in one of the same six directions:<br>
* FORWARD, BACKWARD, UP, DOWN, LEFT and RIGHT.
*
* So, To fully define how your Hub is mounted to the robot, you must simply specify:<br>
* logoFacingDirection<br>
* usbFacingDirection
*
* Use Android Studio to Copy this Class, and Paste it into your team's code folder with a new name.
* Remove or comment out the @Disabled line to add this OpMode to the Driver Station OpMode list.
*
* Finally, choose the two correct parameters to define how your Hub is mounted and edit this OpMode
* to use those parameters.
*/
@TeleOp(name = "Sensor: IMU Orthogonal", group = "Sensor")
@Disabled // Comment this out to add to the OpMode list
public class SensorIMUOrthogonal extends LinearOpMode {
// The IMU sensor object
IMU imu;
private Encoder leftEncoder;
private Encoder rightEncoder;
private Encoder strafeEncoder;
//----------------------------------------------------------------------------------------------
// Main logic
//----------------------------------------------------------------------------------------------
@Override
public void runOpMode() throws InterruptedException {
// Retrieve and initialize the IMU.
// This sample expects the IMU to be in a REV Hub and named "imu".
imu = hardwareMap.get(IMU.class, PedroConstants.IMU);
// TODO: replace these with your encoder ports
leftEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, LEFT_ENCODER));
rightEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, RIGHT_ENCODER));
strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_ENCODER));
// TODO: reverse any encoders necessary
leftEncoder.setDirection(LEFT_ENCODER_DIRECTION);
rightEncoder.setDirection(RIGHT_ENCODER_DIRECTION);
strafeEncoder.setDirection(BACK_ENCODER_DIRECTION);
/* Define how the hub is mounted on the robot to get the correct Yaw, Pitch and Roll values.
*
* Two input parameters are required to fully specify the Orientation.
* The first parameter specifies the direction the printed logo on the Hub is pointing.
* The second parameter specifies the direction the USB connector on the Hub is pointing.
* All directions are relative to the robot, and left/right is as-viewed from behind the robot.
*
* If you are using a REV 9-Axis IMU, you can use the Rev9AxisImuOrientationOnRobot class instead of the
* RevHubOrientationOnRobot class, which has an I2cPortFacingDirection instead of a UsbFacingDirection.
*/
/* The next two lines define Hub orientation.
* The Default Orientation (shown) is when a hub is mounted horizontally with the printed logo pointing UP and the USB port pointing FORWARD.
*
* To Do: EDIT these two lines to match YOUR mounting configuration.
*/
RevHubOrientationOnRobot.LogoFacingDirection logoDirection = IMU_LOGO_FACING_DIRECTION;
RevHubOrientationOnRobot.UsbFacingDirection usbDirection = IMU_USB_FACING_DIRECTION;
RevHubOrientationOnRobot orientationOnRobot = new RevHubOrientationOnRobot(logoDirection, usbDirection);
// Now initialize the IMU with this mounting orientation
// Note: if you choose two conflicting directions, this initialization will cause a code exception.
imu.initialize(new IMU.Parameters(orientationOnRobot));
// Loop and update the dashboard
while (!isStopRequested()) {
telemetry.addData("Hub orientation", "Logo=%s USB=%s\n ", logoDirection, usbDirection);
// Check to see if heading reset is requested
if (gamepad1.y) {
telemetry.addData("Yaw", "Resetting\n");
imu.resetYaw();
} else {
telemetry.addData("Yaw", "Press Y (triangle) on Gamepad to reset\n");
}
// Retrieve Rotational Angles and Velocities
YawPitchRollAngles orientation = imu.getRobotYawPitchRollAngles();
AngularVelocity angularVelocity = imu.getRobotAngularVelocity(AngleUnit.DEGREES);
telemetry.addData("Yaw (Z)", "%.2f Deg. (Heading)", orientation.getYaw(AngleUnit.DEGREES));
telemetry.addData("Pitch (X)", "%.2f Deg.", orientation.getPitch(AngleUnit.DEGREES));
telemetry.addData("Roll (Y)", "%.2f Deg.\n", orientation.getRoll(AngleUnit.DEGREES));
telemetry.addData("Yaw (Z) velocity", "%.2f Deg/Sec", angularVelocity.zRotationRate);
telemetry.addData("Pitch (X) velocity", "%.2f Deg/Sec", angularVelocity.xRotationRate);
telemetry.addData("Roll (Y) velocity", "%.2f Deg/Sec", angularVelocity.yRotationRate);
telemetry.update();
}
}
}

View File

@ -0,0 +1,165 @@
package org.firstinspires.ftc.teamcode;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.Servo;
import com.qualcomm.robotcore.util.ElapsedTime;
import org.firstinspires.ftc.robotcontroller.external.samples.UtilityOctoQuadConfigMenu;
import org.firstinspires.ftc.robotcore.external.Telemetry;
@TeleOp(name = "ArmControl")
public class SlideArm extends OpMode {
DcMotor Slide;
Servo ClawServo;
Servo ArmServo;
Servo WristServo;
boolean xPressed;
boolean yPressed;
boolean bPressed;
double ticks = 753.2;
public void init(){
Slide = hardwareMap.get(DcMotor.class, "SlideMotor");
ArmServo = hardwareMap.get(Servo.class,"WristServo");
WristServo = hardwareMap.get(Servo.class, "ArmServo");
ClawServo = hardwareMap.get(Servo.class, "ClawServo");
xPressed = false;
yPressed = false;
bPressed = false;
}
double power = 0;
double position = 1;
public void loop() {
Slide.setPower(-gamepad2.left_stick_y);
Slide.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
if (gamepad2.left_bumper) {
ClawServo.setPosition(0);
} else if (gamepad2.right_bumper) {
ClawServo.setPosition(1);
}
/*if(gamepad2.dpad_down){
WristServo.setPosition(0.78);
ArmServo.setPosition(0.55);
}
else if (gamepad2.dpad_up){
WristServo.setPosition(0.4);
ArmServo.setPosition(0.2);
}*/
if (gamepad2.a) {
Slide.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
}
if (gamepad2.dpad_down) {
SlideArm.ServoSteps(WristServo, 0.78, 4, 8);
try {
Thread.sleep(50);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
SlideArm.ServoSteps(ArmServo, 0.55, 10, 5);
} else if (gamepad2.dpad_up) {
WristServo.setPosition(0.4);
ArmServo.setPosition(0.2);
}
telemetry.addData("Slide Ticks", Slide.getCurrentPosition());
telemetry.update();
//limit = 6600;
if (gamepad2.x) {
xPressed = true;
}
while (xPressed && Slide.getCurrentPosition() < 6300) {
Slide.setPower(0.6);
Slide.setTargetPosition(6300);
Slide.setMode(DcMotor.RunMode.RUN_TO_POSITION);
telemetry.addData("In While Loop:", Slide.getCurrentPosition());
telemetry.update();
}
if (xPressed && Slide.getCurrentPosition() >= 6300)
{
xPressed = false;
}
Slide.setPower(0);
if (gamepad2.y) {
yPressed = false;
}
while (yPressed && Slide.getCurrentPosition() < 3150) {
Slide.setPower(0.6);
Slide.setTargetPosition(3150);
Slide.setMode(DcMotor.RunMode.RUN_TO_POSITION);
telemetry.addData("In While Loop:", Slide.getCurrentPosition());
telemetry.update();
}
Slide.setPower(0);
if (yPressed && Slide.getCurrentPosition() >= 3150)
{
yPressed = false;
}
if (gamepad2.b) {
bPressed = !bPressed;
}
while (bPressed && Slide.getCurrentPosition() > 0) {
Slide.setPower(0.6);
Slide.setTargetPosition(0);
Slide.setMode(DcMotor.RunMode.RUN_TO_POSITION);
telemetry.addData("In While Loop:", Slide.getCurrentPosition());
telemetry.update();
}
Slide.setPower(0);
if (xPressed && Slide.getCurrentPosition() >= 0)
{
bPressed = false;
} }
/**
* This function takes 4 parameters and makes your servo move in multiple steps for precision
* @param servo the servo you want to move
* @param targetPosition the position you want to go to
* @param Steps how many steps you want to move before reaching targetPosition
* @param millis how much to sleep between steps
*/
public static void ServoSteps (Servo servo, double targetPosition, int Steps, long millis){
double startingPosition = servo.getPosition();
double howFarToMove = targetPosition-startingPosition;
double Increment = howFarToMove/Steps;
double currentPosition = startingPosition;
for(int i = 0; i < Steps; i ++) {
servo.setPosition(currentPosition + Increment);
currentPosition += Increment;
try {
Thread.sleep(millis);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
}
public void stop(){
}
}

View File

@ -2,4 +2,6 @@
## Pedro Pathing
- `https://pedro-path-generator.vercel.app/`
- Pedro Path Generator: `https://pedro-path-generator.vercel.app/`
- Pedro Path Overview: `https://www.youtube.com/watch?v=HI7eyLLpCgM`
- Pedro Tuning Overview: `https://www.youtube.com/watch?v=3EXX5_KwfVM`

View File

@ -71,7 +71,8 @@ measurements will be in centimeters.
of how fast your robot will coast to a stop. Honestly, this is up to you. I personally used 4, but
what works best for you is most important. Higher numbers will cause a faster brake, but increase
oscillations at the end. Lower numbers will do the opposite. This can be found on line `107` in
`FollowerConstants`, named `zeroPowerAccelerationMultiplier`. The drive PID is much, much more sensitive than the others. For reference,
`FollowerConstants`, named `zeroPowerAccelerationMultiplier`. The drive PID is much, much more
* sensitive than the others. For reference,
my P values were in the hundredths and thousandths place values, and my D values were in the hundred
thousandths and millionths place values. To tune this, enable `useDrive`, `useHeading`, and
`useTranslational` in the `Follower` dropdown in FTC Dashboard. Next, run `StraightBackAndForth`

View File

@ -1,5 +1,6 @@
package org.firstinspires.ftc.teamcode.pedroPathing.follower;
import static org.firstinspires.ftc.teamcode.PedroConstants.*;
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.drivePIDFSwitch;
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.forwardZeroPowerAcceleration;
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.headingPIDFSwitch;
@ -168,8 +169,10 @@ public class Follower {
rightFront = hardwareMap.get(DcMotorEx.class, rightFrontMotorName);
// TODO: Make sure that this is the direction your motors need to be reversed in.
leftFront.setDirection(DcMotorSimple.Direction.REVERSE);
leftRear.setDirection(DcMotorSimple.Direction.REVERSE);
leftFront.setDirection(FRONT_LEFT_MOTOR_DIRECTION);
leftRear.setDirection(BACK_LEFT_MOTOR_DIRECTION);
rightFront.setDirection(FRONT_RIGHT_MOTOR_DIRECTION);
rightRear.setDirection(BACK_RIGHT_MOTOR_DIRECTION);
motors = Arrays.asList(leftFront, leftRear, rightFront, rightRear);

View File

@ -5,6 +5,7 @@ import com.qualcomm.robotcore.hardware.HardwareMap;
import com.qualcomm.robotcore.hardware.IMU;
import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers.DriveEncoderLocalizer;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers.ThreeWheelIMULocalizer;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers.ThreeWheelLocalizer;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers.TwoWheelLocalizer;
@ -70,6 +71,7 @@ public class PoseUpdater {
public PoseUpdater(HardwareMap hardwareMap) {
// TODO: replace the second argument with your preferred localizer
this(hardwareMap, new ThreeWheelLocalizer(hardwareMap));
// this(hardwareMap, new ThreeWheelIMULocalizer(hardwareMap));
}
/**

View File

@ -38,9 +38,9 @@ public class DriveEncoderLocalizer extends Localizer {
private Encoder leftRear;
private Encoder rightRear;
private double totalHeading;
public static double FORWARD_TICKS_TO_INCHES = 1;
public static double STRAFE_TICKS_TO_INCHES = 1;
public static double TURN_TICKS_TO_RADIANS = 1;
public static double FORWARD_TICKS_TO_INCHES = -0.6308;
public static double STRAFE_TICKS_TO_INCHES = 46.4839;
public static double TURN_TICKS_TO_RADIANS = -0.002;
public static double ROBOT_WIDTH = 1;
public static double ROBOT_LENGTH = 1;

View File

@ -1,5 +1,7 @@
package org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers;
import static org.firstinspires.ftc.teamcode.PedroConstants.*;
import com.acmerobotics.dashboard.config.Config;
import com.qualcomm.hardware.rev.RevHubOrientationOnRobot;
import com.qualcomm.robotcore.hardware.DcMotorEx;
@ -63,9 +65,9 @@ public class ThreeWheelIMULocalizer extends Localizer {
private double previousIMUOrientation;
private double deltaRadians;
private double totalHeading;
public static double FORWARD_TICKS_TO_INCHES = 0.002957;//8192 * 1.37795 * 2 * Math.PI * 0.5008239963;
public static double STRAFE_TICKS_TO_INCHES = -0.003127403096038503;//8192 * 1.37795 * 2 * Math.PI * 0.5018874659;
public static double TURN_TICKS_TO_RADIANS = 0.002995;//8192 * 1.37795 * 2 * Math.PI * 0.5;
public static double FORWARD_TICKS_TO_INCHES = 0.004;//8192 * 1.37795 * 2 * Math.PI * 0.5008239963;
public static double STRAFE_TICKS_TO_INCHES = -0.0036;//8192 * 1.37795 * 2 * Math.PI * 0.5018874659;
public static double TURN_TICKS_TO_RADIANS = 0.0043;//8192 * 1.37795 * 2 * Math.PI * 0.5;
public static boolean useIMU = true;
@ -88,26 +90,25 @@ public class ThreeWheelIMULocalizer extends Localizer {
*/
public ThreeWheelIMULocalizer(HardwareMap map, Pose setStartPose) {
hardwareMap = map;
imu = hardwareMap.get(IMU.class, "imu");
imu = hardwareMap.get(IMU.class, IMU);
// TODO: replace this with your IMU's orientation
imu.initialize(new IMU.Parameters(new RevHubOrientationOnRobot(RevHubOrientationOnRobot.LogoFacingDirection.LEFT, RevHubOrientationOnRobot.UsbFacingDirection.UP)));
imu.initialize(new IMU.Parameters(new RevHubOrientationOnRobot(IMU_LOGO_FACING_DIRECTION, IMU_USB_FACING_DIRECTION)));
// TODO: replace these with your encoder positions
leftEncoderPose = new Pose(-3, 5.7, 0);
rightEncoderPose = new Pose(-3, -5.7, 0);
strafeEncoderPose = new Pose(6.9, 1, Math.toRadians(90));
leftEncoderPose = new Pose(-7.625, 6.19375, 0);
rightEncoderPose = new Pose(-7.625, -6.19375, 0);
strafeEncoderPose = new Pose(7, 1, Math.toRadians(90));
// TODO: replace these with your encoder ports
leftEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, "lb"));
rightEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, "lf"));
strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, "rf"));
leftEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, LEFT_ENCODER));
rightEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, RIGHT_ENCODER));
strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_ENCODER));
// TODO: reverse any encoders necessary
leftEncoder.setDirection(Encoder.REVERSE);
rightEncoder.setDirection(Encoder.FORWARD);
strafeEncoder.setDirection(Encoder.FORWARD);
leftEncoder.setDirection(LEFT_ENCODER_DIRECTION);
rightEncoder.setDirection(RIGHT_ENCODER_DIRECTION);
strafeEncoder.setDirection(BACK_ENCODER_DIRECTION);
setStartPose(setStartPose);
timer = new NanoTimer();

View File

@ -1,5 +1,7 @@
package org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers;
import static org.firstinspires.ftc.teamcode.PedroConstants.*;
import com.acmerobotics.dashboard.config.Config;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import com.qualcomm.robotcore.hardware.HardwareMap;
@ -55,9 +57,12 @@ public class ThreeWheelLocalizer extends Localizer {
private Pose rightEncoderPose;
private Pose strafeEncoderPose;
private double totalHeading;
public static double FORWARD_TICKS_TO_INCHES = 0.00052189;//8192 * 1.37795 * 2 * Math.PI * 0.5008239963;
public static double STRAFE_TICKS_TO_INCHES = 0.00052189;//8192 * 1.37795 * 2 * Math.PI * 0.5018874659;
public static double TURN_TICKS_TO_RADIANS = 0.00053717;//8192 * 1.37795 * 2 * Math.PI * 0.5;
// public static double FORWARD_TICKS_TO_INCHES = 0.00052189;//8192 * 1.37795 * 2 * Math.PI * 0.5008239963;
public static double FORWARD_TICKS_TO_INCHES = 0.0029;//8192 * 1.37795 * 2 * Math.PI * 0.5008239963;
// public static double STRAFE_TICKS_TO_INCHES = 0.00052189;//8192 * 1.37795 * 2 * Math.PI * 0.5018874659;
public static double STRAFE_TICKS_TO_INCHES = 0.0029;//8192 * 1.37795 * 2 * Math.PI * 0.5018874659;
// public static double TURN_TICKS_TO_RADIANS = 0.00053717;//8192 * 1.37795 * 2 * Math.PI * 0.5;
public static double TURN_TICKS_TO_RADIANS = 0.003;//8192 * 1.37795 * 2 * Math.PI * 0.5;
/**
* This creates a new ThreeWheelLocalizer from a HardwareMap, with a starting Pose at (0,0)
@ -78,21 +83,21 @@ public class ThreeWheelLocalizer extends Localizer {
*/
public ThreeWheelLocalizer(HardwareMap map, Pose setStartPose) {
// TODO: replace these with your encoder positions
leftEncoderPose = new Pose(-18.5/25.4 - 0.1, 164.4/25.4, 0);
rightEncoderPose = new Pose(-18.4/25.4 - 0.1, -159.6/25.4, 0);
strafeEncoderPose = new Pose(0*(-107.9/25.4+8)+-107.9/25.4+0.25, -1.1/25.4-0.23, Math.toRadians(90));
leftEncoderPose = new Pose(0, 6.19375, 0);
rightEncoderPose = new Pose(0, -6.19375, 0);
strafeEncoderPose = new Pose(-7, 0, Math.toRadians(90));
hardwareMap = map;
// TODO: replace these with your encoder ports
leftEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, "leftRear"));
rightEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, "rightFront"));
strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, "strafeEncoder"));
leftEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, LEFT_ENCODER));
rightEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, RIGHT_ENCODER));
strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_ENCODER));
// TODO: reverse any encoders necessary
leftEncoder.setDirection(Encoder.REVERSE);
rightEncoder.setDirection(Encoder.REVERSE);
strafeEncoder.setDirection(Encoder.FORWARD);
leftEncoder.setDirection(LEFT_ENCODER_DIRECTION);
rightEncoder.setDirection(RIGHT_ENCODER_DIRECTION);
strafeEncoder.setDirection(BACK_ENCODER_DIRECTION);
setStartPose(setStartPose);
timer = new NanoTimer();

View File

@ -1,5 +1,8 @@
package org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.LEFT_ENCODER;
import com.acmerobotics.dashboard.config.Config;
import com.qualcomm.hardware.rev.RevHubOrientationOnRobot;
import com.qualcomm.robotcore.hardware.DcMotorEx;
@ -91,8 +94,8 @@ public class TwoWheelLocalizer extends Localizer { // todo: make two wheel odo w
imu.initialize(new IMU.Parameters(new RevHubOrientationOnRobot(RevHubOrientationOnRobot.LogoFacingDirection.UP, RevHubOrientationOnRobot.UsbFacingDirection.LEFT)));
// TODO: replace these with your encoder ports
forwardEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, "leftRear"));
strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, "strafeEncoder"));
forwardEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, LEFT_ENCODER));
strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_ENCODER));
// TODO: reverse any encoders necessary
forwardEncoder.setDirection(Encoder.REVERSE);

View File

@ -63,6 +63,7 @@ public class LateralTuner extends OpMode {
telemetryA.addData("distance moved", poseUpdater.getPose().getY());
telemetryA.addLine("The multiplier will display what your strafe ticks to inches should be to scale your current distance to " + DISTANCE + " inches.");
telemetryA.addData("multiplier", DISTANCE / (poseUpdater.getPose().getY() / poseUpdater.getLocalizer().getLateralMultiplier()));
telemetryA.update();
Drawing.drawPoseHistory(dashboardPoseTracker, "#4CAF50");

View File

@ -1,6 +1,6 @@
package org.firstinspires.ftc.teamcode.pedroPathing.tuning;
import static org.firstinspires.ftc.teamcode.PedrosConstants.*;
import static org.firstinspires.ftc.teamcode.PedroConstants.*;
import com.acmerobotics.dashboard.config.Config;
@ -42,7 +42,7 @@ public class FollowerConstants {
public static CustomPIDFCoefficients translationalPIDFCoefficients = new CustomPIDFCoefficients(
0.1,
0,
0,
0.01,
0);
// Translational Integral
@ -58,10 +58,10 @@ public class FollowerConstants {
// Heading error PIDF coefficients
public static CustomPIDFCoefficients headingPIDFCoefficients = new CustomPIDFCoefficients(
1,
2,
0,
0,
0);
.075,
-.03125);
// Feed forward constant added on to the heading PIDF
public static double headingPIDFFeedForward = 0.01;
@ -69,10 +69,10 @@ public class FollowerConstants {
// Drive PIDF coefficients
public static CustomFilteredPIDFCoefficients drivePIDFCoefficients = new CustomFilteredPIDFCoefficients(
0.025,
0.006,
0,
0.00001,
0.6,
0.8,
0);
// Feed forward constant added on to the drive PIDF

View File

@ -52,7 +52,7 @@ public class LateralZeroPowerAccelerationTuner extends OpMode {
private PoseUpdater poseUpdater;
public static double VELOCITY = 30;
public static double VELOCITY = 50;
private double previousVelocity;
@ -119,6 +119,13 @@ public class LateralZeroPowerAccelerationTuner extends OpMode {
*/
@Override
public void loop() {
telemetry.addData("x",poseUpdater.getPose().getX());
telemetry.addData("y",poseUpdater.getPose().getY());
telemetry.addData("heading",poseUpdater.getPose().getHeading());
telemetry.addData("velo mag", poseUpdater.getVelocity().getMagnitude());
telemetry.addData("velo theta", poseUpdater.getVelocity().getTheta());
if (gamepad1.cross || gamepad1.a) {
requestOpModeStop();
}

View File

@ -6,14 +6,14 @@ repositories {
}
dependencies {
implementation 'org.firstinspires.ftc:Inspection:10.0.0'
implementation 'org.firstinspires.ftc:Blocks:10.0.0'
implementation 'org.firstinspires.ftc:RobotCore:10.0.0'
implementation 'org.firstinspires.ftc:RobotServer:10.0.0'
implementation 'org.firstinspires.ftc:OnBotJava:10.0.0'
implementation 'org.firstinspires.ftc:Hardware:10.0.0'
implementation 'org.firstinspires.ftc:FtcCommon:10.0.0'
implementation 'org.firstinspires.ftc:Vision:10.0.0'
implementation 'org.firstinspires.ftc:Inspection:10.1.0'
implementation 'org.firstinspires.ftc:Blocks:10.1.0'
implementation 'org.firstinspires.ftc:RobotCore:10.1.0'
implementation 'org.firstinspires.ftc:RobotServer:10.1.0'
implementation 'org.firstinspires.ftc:OnBotJava:10.1.0'
implementation 'org.firstinspires.ftc:Hardware:10.1.0'
implementation 'org.firstinspires.ftc:FtcCommon:10.1.0'
implementation 'org.firstinspires.ftc:Vision:10.1.0'
implementation 'androidx.appcompat:appcompat:1.2.0'
implementation 'com.acmerobotics.dashboard:dashboard:0.4.5'