Compare commits
18 Commits
branch-ped
...
branch-bob
Author | SHA1 | Date | |
---|---|---|---|
bee78d7d71 | |||
b442008fb6 | |||
4e8c37e01b | |||
6a125ff247 | |||
1c4b3723c3 | |||
7a028835f8 | |||
cd10d3a01b | |||
89f4c1b9a0 | |||
6f784936d2 | |||
945a77ca49 | |||
43c505e292 | |||
5cec300e58 | |||
00146b2e40 | |||
ba5e1e6fe4 | |||
a64a558f2f | |||
99099bf78f | |||
efd3302645 | |||
a7f060c3eb |
@ -0,0 +1,122 @@
|
||||
package org.firstinspires.ftc.teamcode;
|
||||
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR;
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR;
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR;
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR;
|
||||
|
||||
import com.acmerobotics.dashboard.FtcDashboard;
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
|
||||
import com.qualcomm.robotcore.hardware.DcMotor;
|
||||
import com.qualcomm.robotcore.hardware.DcMotorEx;
|
||||
|
||||
import org.firstinspires.ftc.robotcore.external.Telemetry;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
|
||||
|
||||
/**
|
||||
* This is the Circle autonomous OpMode. It runs the robot in a PathChain that's actually not quite
|
||||
* a circle, but some Bezier curves that have control points set essentially in a square. However,
|
||||
* it turns enough to tune your centripetal force correction and some of your heading. Some lag in
|
||||
* heading is to be expected.
|
||||
*
|
||||
* @author Anyi Lin - 10158 Scott's Bots
|
||||
* @author Aaron Yang - 10158 Scott's Bots
|
||||
* @author Harrison Womack - 10158 Scott's Bots
|
||||
* @version 1.0, 3/12/2024
|
||||
*/
|
||||
@Config
|
||||
@Autonomous(name = "AutoExample", group = "Autonomous Pathing Tuning")
|
||||
public class AutoExample extends OpMode {
|
||||
private Telemetry telemetryA;
|
||||
|
||||
private Follower follower;
|
||||
|
||||
private PathChain path;
|
||||
|
||||
private final Pose startPose = new Pose(12.0, 11, 90);
|
||||
|
||||
/**
|
||||
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
|
||||
* initializes the FTC Dashboard telemetry.
|
||||
*/
|
||||
@Override
|
||||
public void init() {
|
||||
follower = new Follower(hardwareMap);
|
||||
|
||||
follower.setMaxPower(.6);
|
||||
|
||||
follower.setStartingPose(startPose);
|
||||
|
||||
path = follower.pathBuilder()
|
||||
.addPath(
|
||||
// Line 1
|
||||
new BezierLine(
|
||||
new Point(12.804, 11.223, Point.CARTESIAN),
|
||||
new Point(12.804, 42.362, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setTangentHeadingInterpolation()
|
||||
.addPath(
|
||||
// Line 2
|
||||
new BezierCurve(
|
||||
new Point(12.804, 42.362, Point.CARTESIAN),
|
||||
new Point(11.381, 57.379, Point.CARTESIAN),
|
||||
new Point(31.614, 56.588, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setTangentHeadingInterpolation()
|
||||
.addPath(
|
||||
// Line 3
|
||||
new BezierLine(
|
||||
new Point(31.614, 56.588, Point.CARTESIAN),
|
||||
new Point(51.214, 56.746, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setTangentHeadingInterpolation()
|
||||
.addPath(
|
||||
// Line 4
|
||||
new BezierCurve(
|
||||
new Point(51.214, 56.746, Point.CARTESIAN),
|
||||
new Point(64.334, 58.643, Point.CARTESIAN),
|
||||
new Point(61.172, 45.524, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setTangentHeadingInterpolation()
|
||||
.addPath(
|
||||
// Line 5
|
||||
new BezierCurve(
|
||||
new Point(61.172, 45.524, Point.CARTESIAN),
|
||||
new Point(36.198, 26.239, Point.CARTESIAN),
|
||||
new Point(19.759, 11.065, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setTangentHeadingInterpolation()
|
||||
.build();
|
||||
|
||||
follower.followPath(path);
|
||||
|
||||
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
|
||||
telemetryA.update();
|
||||
}
|
||||
|
||||
/**
|
||||
* This runs the OpMode, updating the Follower as well as printing out the debug statements to
|
||||
* the Telemetry, as well as the FTC Dashboard.
|
||||
*/
|
||||
@Override
|
||||
public void loop() {
|
||||
follower.update();
|
||||
if (follower.atParametricEnd()) {
|
||||
follower.followPath(path);
|
||||
}
|
||||
follower.telemetryDebug(telemetryA);
|
||||
}
|
||||
}
|
@ -0,0 +1,142 @@
|
||||
package org.firstinspires.ftc.teamcode;
|
||||
|
||||
import com.acmerobotics.dashboard.FtcDashboard;
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
|
||||
|
||||
import org.firstinspires.ftc.robotcore.external.Telemetry;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
|
||||
|
||||
/**
|
||||
* This is the Circle autonomous OpMode. It runs the robot in a PathChain that's actually not quite
|
||||
* a circle, but some Bezier curves that have control points set essentially in a square. However,
|
||||
* it turns enough to tune your centripetal force correction and some of your heading. Some lag in
|
||||
* heading is to be expected.
|
||||
*
|
||||
* @author Anyi Lin - 10158 Scott's Bots
|
||||
* @author Aaron Yang - 10158 Scott's Bots
|
||||
* @author Harrison Womack - 10158 Scott's Bots
|
||||
* @version 1.0, 3/12/2024
|
||||
*/
|
||||
@Config
|
||||
@Autonomous(name = "AutoExampleSeason2025V1", group = "Autonomous Pathing Tuning")
|
||||
public class AutoExampleSeason2025V1 extends OpMode {
|
||||
private Telemetry telemetryA;
|
||||
|
||||
private Follower follower;
|
||||
|
||||
private PathChain path;
|
||||
|
||||
private final Pose startPose = new Pose(15.0, 35, 90);
|
||||
|
||||
/**
|
||||
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
|
||||
* initializes the FTC Dashboard telemetry.
|
||||
*/
|
||||
@Override
|
||||
public void init() {
|
||||
follower = new Follower(hardwareMap);
|
||||
|
||||
follower.setMaxPower(.375);
|
||||
|
||||
follower.setStartingPose(startPose);
|
||||
|
||||
path = follower.pathBuilder()
|
||||
.addPath(
|
||||
// Line 1
|
||||
new BezierLine(
|
||||
new Point(15.000, 35.000, Point.CARTESIAN),
|
||||
new Point(60.000, 35.000, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 2
|
||||
new BezierLine(
|
||||
new Point(60.000, 35.000, Point.CARTESIAN),
|
||||
new Point(60.000, 25.000, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 3
|
||||
new BezierLine(
|
||||
new Point(60.000, 25.000, Point.CARTESIAN),
|
||||
new Point(15.000, 25.000, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 4
|
||||
new BezierLine(
|
||||
new Point(15.000, 25.000, Point.CARTESIAN),
|
||||
new Point(60.000, 25.000, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 5
|
||||
new BezierLine(
|
||||
new Point(60.000, 25.000, Point.CARTESIAN),
|
||||
new Point(60.000, 15.000, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 6
|
||||
new BezierLine(
|
||||
new Point(60.000, 15.000, Point.CARTESIAN),
|
||||
new Point(15.000, 15.000, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 7
|
||||
new BezierLine(
|
||||
new Point(15.000, 15.000, Point.CARTESIAN),
|
||||
new Point(60.000, 15.000, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 8
|
||||
new BezierLine(
|
||||
new Point(60.000, 15.000, Point.CARTESIAN),
|
||||
new Point(60.000, 8.000, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 9
|
||||
new BezierLine(
|
||||
new Point(60.000, 8.000, Point.CARTESIAN),
|
||||
new Point(15.000, 8.000, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90)).build();
|
||||
|
||||
follower.followPath(path);
|
||||
|
||||
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
|
||||
telemetryA.update();
|
||||
}
|
||||
|
||||
/**
|
||||
* This runs the OpMode, updating the Follower as well as printing out the debug statements to
|
||||
* the Telemetry, as well as the FTC Dashboard.
|
||||
*/
|
||||
@Override
|
||||
public void loop() {
|
||||
follower.update();
|
||||
if (follower.atParametricEnd()) {
|
||||
follower.followPath(path);
|
||||
}
|
||||
follower.telemetryDebug(telemetryA);
|
||||
}
|
||||
}
|
@ -0,0 +1,80 @@
|
||||
package org.firstinspires.ftc.teamcode;
|
||||
|
||||
import com.acmerobotics.dashboard.FtcDashboard;
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
|
||||
|
||||
import org.firstinspires.ftc.robotcore.external.Telemetry;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
|
||||
|
||||
/**
|
||||
* This is the Circle autonomous OpMode. It runs the robot in a PathChain that's actually not quite
|
||||
* a circle, but some Bezier curves that have control points set essentially in a square. However,
|
||||
* it turns enough to tune your centripetal force correction and some of your heading. Some lag in
|
||||
* heading is to be expected.
|
||||
*
|
||||
* @author Anyi Lin - 10158 Scott's Bots
|
||||
* @author Aaron Yang - 10158 Scott's Bots
|
||||
* @author Harrison Womack - 10158 Scott's Bots
|
||||
* @version 1.0, 3/12/2024
|
||||
*/
|
||||
@Config
|
||||
@Autonomous(name = "AutoExampleThree", group = "Autonomous Pathing Tuning")
|
||||
public class AutoExampleThree extends OpMode {
|
||||
private Telemetry telemetryA;
|
||||
|
||||
private Follower follower;
|
||||
|
||||
private PathChain path;
|
||||
|
||||
private final Pose startPose = new Pose(10.0, 40, 90);
|
||||
|
||||
/**
|
||||
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
|
||||
* initializes the FTC Dashboard telemetry.
|
||||
*/
|
||||
@Override
|
||||
public void init() {
|
||||
follower = new Follower(hardwareMap);
|
||||
|
||||
follower.setMaxPower(.4);
|
||||
|
||||
follower.setStartingPose(startPose);
|
||||
|
||||
path = follower.pathBuilder()
|
||||
.addPath(
|
||||
// Line 1
|
||||
new BezierCurve(
|
||||
new Point(10.000, 20.000, Point.CARTESIAN),
|
||||
new Point(29.089, 61.232, Point.CARTESIAN),
|
||||
new Point(48.054, 19.607, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90)).build();
|
||||
|
||||
follower.followPath(path);
|
||||
|
||||
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
|
||||
telemetryA.update();
|
||||
}
|
||||
|
||||
/**
|
||||
* This runs the OpMode, updating the Follower as well as printing out the debug statements to
|
||||
* the Telemetry, as well as the FTC Dashboard.
|
||||
*/
|
||||
@Override
|
||||
public void loop() {
|
||||
follower.update();
|
||||
if (follower.atParametricEnd()) {
|
||||
follower.followPath(path);
|
||||
}
|
||||
follower.telemetryDebug(telemetryA);
|
||||
}
|
||||
}
|
@ -0,0 +1,95 @@
|
||||
package org.firstinspires.ftc.teamcode;
|
||||
|
||||
import com.acmerobotics.dashboard.FtcDashboard;
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
|
||||
|
||||
import org.firstinspires.ftc.robotcore.external.Telemetry;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
|
||||
|
||||
/**
|
||||
* This is the Circle autonomous OpMode. It runs the robot in a PathChain that's actually not quite
|
||||
* a circle, but some Bezier curves that have control points set essentially in a square. However,
|
||||
* it turns enough to tune your centripetal force correction and some of your heading. Some lag in
|
||||
* heading is to be expected.
|
||||
*
|
||||
* @author Anyi Lin - 10158 Scott's Bots
|
||||
* @author Aaron Yang - 10158 Scott's Bots
|
||||
* @author Harrison Womack - 10158 Scott's Bots
|
||||
* @version 1.0, 3/12/2024
|
||||
*/
|
||||
@Config
|
||||
@Autonomous(name = "AutoExampleTwo", group = "Autonomous Pathing Tuning")
|
||||
public class AutoExampleTwo extends OpMode {
|
||||
private Telemetry telemetryA;
|
||||
|
||||
private Follower follower;
|
||||
|
||||
private PathChain path;
|
||||
|
||||
private final Pose startPose = new Pose(10.0, 40, 90);
|
||||
|
||||
/**
|
||||
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
|
||||
* initializes the FTC Dashboard telemetry.
|
||||
*/
|
||||
@Override
|
||||
public void init() {
|
||||
follower = new Follower(hardwareMap);
|
||||
|
||||
follower.setMaxPower(.4);
|
||||
|
||||
follower.setStartingPose(startPose);
|
||||
|
||||
path = follower.pathBuilder()
|
||||
.addPath(
|
||||
// Line 1
|
||||
new BezierLine(
|
||||
new Point(10.000, 40.000, Point.CARTESIAN),
|
||||
new Point(60.000, 40.000, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 2
|
||||
new BezierLine(
|
||||
new Point(60.000, 40.000, Point.CARTESIAN),
|
||||
new Point(60.000, 25.000, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 3
|
||||
new BezierLine(
|
||||
new Point(60.000, 25.000, Point.CARTESIAN),
|
||||
new Point(10.000, 25.000, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90)).build();
|
||||
|
||||
follower.followPath(path);
|
||||
|
||||
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
|
||||
telemetryA.update();
|
||||
}
|
||||
|
||||
/**
|
||||
* This runs the OpMode, updating the Follower as well as printing out the debug statements to
|
||||
* the Telemetry, as well as the FTC Dashboard.
|
||||
*/
|
||||
@Override
|
||||
public void loop() {
|
||||
follower.update();
|
||||
if (follower.atParametricEnd()) {
|
||||
follower.followPath(path);
|
||||
}
|
||||
follower.telemetryDebug(telemetryA);
|
||||
}
|
||||
}
|
@ -0,0 +1,199 @@
|
||||
/* Copyright (c) 2021 FIRST. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification,
|
||||
* are permitted (subject to the limitations in the disclaimer below) provided that
|
||||
* the following conditions are met:
|
||||
*
|
||||
* Redistributions of source code must retain the above copyright notice, this list
|
||||
* of conditions and the following disclaimer.
|
||||
*
|
||||
* Redistributions in binary form must reproduce the above copyright notice, this
|
||||
* list of conditions and the following disclaimer in the documentation and/or
|
||||
* other materials provided with the distribution.
|
||||
*
|
||||
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
|
||||
* promote products derived from this software without specific prior written permission.
|
||||
*
|
||||
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
|
||||
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
||||
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
package org.firstinspires.ftc.teamcode;
|
||||
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR;
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR_DIRECTION;
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR;
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR_DIRECTION;
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR;
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR_DIRECTION;
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR;
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR_DIRECTION;
|
||||
|
||||
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
|
||||
import com.qualcomm.robotcore.hardware.DcMotor;
|
||||
import com.qualcomm.robotcore.hardware.DcMotorEx;
|
||||
import com.qualcomm.robotcore.util.ElapsedTime;
|
||||
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Encoder;
|
||||
|
||||
/*
|
||||
* This file contains an example of a Linear "OpMode".
|
||||
* An OpMode is a 'program' that runs in either the autonomous or the teleop period of an FTC match.
|
||||
* The names of OpModes appear on the menu of the FTC Driver Station.
|
||||
* When a selection is made from the menu, the corresponding OpMode is executed.
|
||||
*
|
||||
* This particular OpMode illustrates driving a 4-motor Omni-Directional (or Holonomic) robot.
|
||||
* This code will work with either a Mecanum-Drive or an X-Drive train.
|
||||
* Both of these drives are illustrated at https://gm0.org/en/latest/docs/robot-design/drivetrains/holonomic.html
|
||||
* Note that a Mecanum drive must display an X roller-pattern when viewed from above.
|
||||
*
|
||||
* Also note that it is critical to set the correct rotation direction for each motor. See details below.
|
||||
*
|
||||
* Holonomic drives provide the ability for the robot to move in three axes (directions) simultaneously.
|
||||
* Each motion axis is controlled by one Joystick axis.
|
||||
*
|
||||
* 1) Axial: Driving forward and backward Left-joystick Forward/Backward
|
||||
* 2) Lateral: Strafing right and left Left-joystick Right and Left
|
||||
* 3) Yaw: Rotating Clockwise and counter clockwise Right-joystick Right and Left
|
||||
*
|
||||
* This code is written assuming that the right-side motors need to be reversed for the robot to drive forward.
|
||||
* When you first test your robot, if it moves backward when you push the left stick forward, then you must flip
|
||||
* the direction of all 4 motors (see code below).
|
||||
*
|
||||
* Use Android Studio to Copy this Class, and Paste it into your team's code folder with a new name.
|
||||
* Remove or comment out the @Disabled line to add this OpMode to the Driver Station OpMode list
|
||||
*/
|
||||
|
||||
@TeleOp(name = "Basic: Omni Linear OpMode", group = "Linear OpMode")
|
||||
public class BasicOmniOpMode_Linear extends LinearOpMode {
|
||||
|
||||
// Declare OpMode members for each of the 4 motors.
|
||||
private final ElapsedTime runtime = new ElapsedTime();
|
||||
private Encoder leftFront;
|
||||
private Encoder rightFront;
|
||||
private Encoder leftRear;
|
||||
private Encoder rightRear;
|
||||
@Override
|
||||
public void runOpMode() {
|
||||
|
||||
// Initialize the hardware variables. Note that the strings used here must correspond
|
||||
// to the names assigned during the robot configuration step on the DS or RC devices.
|
||||
DcMotor leftFrontDrive = hardwareMap.get(DcMotor.class, FRONT_LEFT_MOTOR);
|
||||
DcMotor leftBackDrive = hardwareMap.get(DcMotor.class, BACK_LEFT_MOTOR);
|
||||
DcMotor rightFrontDrive = hardwareMap.get(DcMotor.class, FRONT_RIGHT_MOTOR);
|
||||
DcMotor rightBackDrive = hardwareMap.get(DcMotor.class, BACK_RIGHT_MOTOR);
|
||||
|
||||
leftFront = new Encoder(hardwareMap.get(DcMotorEx.class, FRONT_LEFT_MOTOR));
|
||||
leftRear = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_LEFT_MOTOR));
|
||||
rightRear = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_RIGHT_MOTOR));
|
||||
rightFront = new Encoder(hardwareMap.get(DcMotorEx.class, FRONT_RIGHT_MOTOR));
|
||||
|
||||
|
||||
// ########################################################################################
|
||||
// !!! IMPORTANT Drive Information. Test your motor directions. !!!!!
|
||||
// ########################################################################################
|
||||
// Most robots need the motors on one side to be reversed to drive forward.
|
||||
// The motor reversals shown here are for a "direct drive" robot (the wheels turn the same direction as the motor shaft)
|
||||
// If your robot has additional gear reductions or uses a right-angled drive, it's important to ensure
|
||||
// that your motors are turning in the correct direction. So, start out with the reversals here, BUT
|
||||
// when you first test your robot, push the left joystick forward and observe the direction the wheels turn.
|
||||
// Reverse the direction (flip FORWARD <-> REVERSE ) of any wheel that runs backward
|
||||
// Keep testing until ALL the wheels move the robot forward when you push the left joystick forward.
|
||||
leftFrontDrive.setDirection(FRONT_LEFT_MOTOR_DIRECTION);
|
||||
leftBackDrive.setDirection(BACK_LEFT_MOTOR_DIRECTION);
|
||||
rightFrontDrive.setDirection(FRONT_RIGHT_MOTOR_DIRECTION);
|
||||
rightBackDrive.setDirection(BACK_RIGHT_MOTOR_DIRECTION);
|
||||
|
||||
leftFrontDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
|
||||
leftBackDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
|
||||
rightFrontDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
|
||||
rightBackDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
|
||||
|
||||
leftFrontDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
leftBackDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
rightFrontDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
rightBackDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
|
||||
|
||||
|
||||
// Wait for the game to start (driver presses START)
|
||||
telemetry.addData("Status", "Initialized");
|
||||
telemetry.update();
|
||||
|
||||
waitForStart();
|
||||
runtime.reset();
|
||||
|
||||
// run until the end of the match (driver presses STOP)
|
||||
while (opModeIsActive()) {
|
||||
double max;
|
||||
|
||||
// POV Mode uses left joystick to go forward & strafe, and right joystick to rotate.
|
||||
double axial = -gamepad1.left_stick_y; // Note: pushing stick forward gives negative value
|
||||
double lateral = gamepad1.left_stick_x;
|
||||
double yaw = gamepad1.right_stick_x;
|
||||
|
||||
// Combine the joystick requests for each axis-motion to determine each wheel's power.
|
||||
// Set up a variable for each drive wheel to save the power level for telemetry.
|
||||
double leftFrontPower = axial + lateral + yaw;
|
||||
double rightFrontPower = axial - lateral - yaw;
|
||||
double leftBackPower = axial - lateral + yaw;
|
||||
double rightBackPower = axial + lateral - yaw;
|
||||
|
||||
// Normalize the values so no wheel power exceeds 100%
|
||||
// This ensures that the robot maintains the desired motion.
|
||||
max = Math.max(Math.abs(leftFrontPower), Math.abs(rightFrontPower));
|
||||
max = Math.max(max, Math.abs(leftBackPower));
|
||||
max = Math.max(max, Math.abs(rightBackPower));
|
||||
|
||||
if (max > 1.0) {
|
||||
leftFrontPower /= max;
|
||||
rightFrontPower /= max;
|
||||
leftBackPower /= max;
|
||||
rightBackPower /= max;
|
||||
}
|
||||
|
||||
// This is test code:
|
||||
//
|
||||
// Uncomment the following code to test your motor directions.
|
||||
// Each button should make the corresponding motor run FORWARD.
|
||||
// 1) First get all the motors to take to correct positions on the robot
|
||||
// by adjusting your Robot Configuration if necessary.
|
||||
// 2) Then make sure they run in the correct direction by modifying the
|
||||
// the setDirection() calls above.
|
||||
// Once the correct motors move in the correct direction re-comment this code.
|
||||
|
||||
/*
|
||||
leftFrontPower = gamepad1.x ? 1.0 : 0.0; // X gamepad
|
||||
leftBackPower = gamepad1.a ? 1.0 : 0.0; // A gamepad
|
||||
rightFrontPower = gamepad1.y ? 1.0 : 0.0; // Y gamepad
|
||||
rightBackPower = gamepad1.b ? 1.0 : 0.0; // B gamepad
|
||||
*/
|
||||
|
||||
// Send calculated power to wheels
|
||||
leftFrontDrive.setPower(leftFrontPower);
|
||||
rightFrontDrive.setPower(rightFrontPower);
|
||||
leftBackDrive.setPower(leftBackPower);
|
||||
rightBackDrive.setPower(rightBackPower);
|
||||
|
||||
// Show the elapsed game time and wheel power.
|
||||
telemetry.addData("Status", "Run Time: " + runtime);
|
||||
telemetry.addData("Front left/Right", "%4.2f, %4.2f", leftFrontPower, rightFrontPower);
|
||||
telemetry.addData("Back left/Right", "%4.2f, %4.2f", leftBackPower, rightBackPower);
|
||||
telemetry.addData("Encoder Front Left", leftFrontDrive.getDirection() + " : " + leftFrontDrive.getCurrentPosition());
|
||||
telemetry.addData("Encoder Front Right", rightFrontDrive.getCurrentPosition());
|
||||
telemetry.addData("Encoder Back Left", leftBackDrive.getCurrentPosition());
|
||||
telemetry.addData("Encoder Back Right", rightBackDrive.getCurrentPosition());
|
||||
telemetry.update();
|
||||
}
|
||||
}
|
||||
}
|
@ -0,0 +1,247 @@
|
||||
package org.firstinspires.ftc.teamcode;
|
||||
|
||||
import com.acmerobotics.dashboard.FtcDashboard;
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
|
||||
|
||||
import org.firstinspires.ftc.robotcore.external.Telemetry;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
|
||||
|
||||
/**
|
||||
* This is the Circle autonomous OpMode. It runs the robot in a PathChain that's actually not quite
|
||||
* a circle, but some Bezier curves that have control points set essentially in a square. However,
|
||||
* it turns enough to tune your centripetal force correction and some of your heading. Some lag in
|
||||
* heading is to be expected.
|
||||
*
|
||||
* @author Anyi Lin - 10158 Scott's Bots
|
||||
* @author Aaron Yang - 10158 Scott's Bots
|
||||
* @author Harrison Womack - 10158 Scott's Bots
|
||||
* @version 1.0, 3/12/2024
|
||||
*/
|
||||
@Config
|
||||
@Autonomous(name = "BluebAutoV1", group = "Autonomous Pathing Tuning")
|
||||
public class BluebAutoV1 extends OpMode {
|
||||
private Telemetry telemetryA;
|
||||
|
||||
private Follower follower;
|
||||
|
||||
private PathChain path;
|
||||
|
||||
private final Pose startPose = new Pose(7.5, 72, 90);
|
||||
|
||||
/**
|
||||
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
|
||||
* initializes the FTC Dashboard telemetry.
|
||||
*/
|
||||
@Override
|
||||
public void init() {
|
||||
follower = new Follower(hardwareMap);
|
||||
|
||||
follower.setMaxPower(.4);
|
||||
|
||||
follower.setStartingPose(startPose);
|
||||
|
||||
path = follower.pathBuilder()
|
||||
.addPath(
|
||||
// Line 1
|
||||
new BezierLine(
|
||||
new Point(7.5, 72, Point.CARTESIAN),
|
||||
new Point(29.893, 38.250, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 2
|
||||
new BezierLine(
|
||||
new Point(29.893, 38.250, Point.CARTESIAN),
|
||||
new Point(65.250, 32.143, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 3
|
||||
new BezierLine(
|
||||
new Point(65.250, 32.143, Point.CARTESIAN),
|
||||
new Point(61.714, 24.429, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 4
|
||||
new BezierLine(
|
||||
new Point(61.714, 24.429, Point.CARTESIAN),
|
||||
new Point(13.821, 22.821, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 5
|
||||
new BezierLine(
|
||||
new Point(13.821, 22.821, Point.CARTESIAN),
|
||||
new Point(61.714, 24.429, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 6
|
||||
new BezierLine(
|
||||
new Point(61.714, 24.429, Point.CARTESIAN),
|
||||
new Point(60.750, 12.696, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 7
|
||||
new BezierLine(
|
||||
new Point(60.750, 12.696, Point.CARTESIAN),
|
||||
new Point(12.375, 13.179, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 8
|
||||
new BezierLine(
|
||||
new Point(12.375, 13.179, Point.CARTESIAN),
|
||||
new Point(60.750, 12.536, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 9
|
||||
new BezierLine(
|
||||
new Point(60.750, 12.536, Point.CARTESIAN),
|
||||
new Point(60.589, 9.321, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 10
|
||||
new BezierLine(
|
||||
new Point(60.589, 9.321, Point.CARTESIAN),
|
||||
new Point(12.536, 8.357, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 11
|
||||
new BezierLine(
|
||||
new Point(12.536, 8.357, Point.CARTESIAN),
|
||||
new Point(26.679, 8.679, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 12
|
||||
new BezierLine(
|
||||
new Point(26.679, 8.679, Point.CARTESIAN),
|
||||
new Point(22.821, 109.446, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 13
|
||||
new BezierLine(
|
||||
new Point(22.821, 109.446, Point.CARTESIAN),
|
||||
new Point(70.714, 109.446, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 14
|
||||
new BezierLine(
|
||||
new Point(70.714, 109.446, Point.CARTESIAN),
|
||||
new Point(71.036, 120.214, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 15
|
||||
new BezierLine(
|
||||
new Point(71.036, 120.214, Point.CARTESIAN),
|
||||
new Point(22.179, 120.214, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 16
|
||||
new BezierLine(
|
||||
new Point(22.179, 120.214, Point.CARTESIAN),
|
||||
new Point(11.089, 130.821, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 17
|
||||
new BezierLine(
|
||||
new Point(11.089, 130.821, Point.CARTESIAN),
|
||||
new Point(70.714, 112.018, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 18
|
||||
new BezierLine(
|
||||
new Point(70.714, 112.018, Point.CARTESIAN),
|
||||
new Point(70.714, 128.250, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 19
|
||||
new BezierLine(
|
||||
new Point(70.714, 128.250, Point.CARTESIAN),
|
||||
new Point(9.964, 130.018, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 20
|
||||
new BezierLine(
|
||||
new Point(9.964, 130.018, Point.CARTESIAN),
|
||||
new Point(70.554, 130.500, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 21
|
||||
new BezierLine(
|
||||
new Point(70.554, 130.500, Point.CARTESIAN),
|
||||
new Point(70.393, 135.000, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90))
|
||||
.addPath(
|
||||
// Line 22
|
||||
new BezierLine(
|
||||
new Point(70.393, 135.000, Point.CARTESIAN),
|
||||
new Point(13.821, 134.839, Point.CARTESIAN)
|
||||
)
|
||||
)
|
||||
.setConstantHeadingInterpolation(Math.toRadians(90)).build();
|
||||
|
||||
follower.followPath(path);
|
||||
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
|
||||
telemetryA.update();
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* This runs the OpMode, updating the Follower as well as printing out the debug statements to
|
||||
* the Telemetry, as well as the FTC Dashboard.
|
||||
*/
|
||||
@Override
|
||||
public void loop() {
|
||||
follower.update();
|
||||
if (follower.atParametricEnd()) {
|
||||
follower.followPath(path);
|
||||
}
|
||||
follower.telemetryDebug(telemetryA);
|
||||
}
|
||||
}
|
@ -0,0 +1,4 @@
|
||||
package org.firstinspires.ftc.teamcode;
|
||||
|
||||
public class BluenbAutov1 {
|
||||
}
|
@ -20,49 +20,36 @@ public class PedroConstants {
|
||||
// Robot motor direction
|
||||
public static final Direction FRONT_LEFT_MOTOR_DIRECTION = Direction.REVERSE;
|
||||
public static final Direction BACK_LEFT_MOTOR_DIRECTION = Direction.REVERSE;
|
||||
public static final Direction FRONT_RIGHT_MOTOR_DIRECTION = Direction.FORWARD;
|
||||
public static final Direction BACK_RIGHT_MOTOR_DIRECTION = Direction.FORWARD;
|
||||
|
||||
// Robot IMU configuration
|
||||
public static final String IMU = "imu";
|
||||
|
||||
// Robot IMU placement
|
||||
public static final RevHubOrientationOnRobot.LogoFacingDirection IMU_LOGO_FACING_DIRECTION
|
||||
= RevHubOrientationOnRobot.LogoFacingDirection.DOWN;
|
||||
public static final RevHubOrientationOnRobot.UsbFacingDirection IMU_USB_FACING_DIRECTION
|
||||
= RevHubOrientationOnRobot.UsbFacingDirection.LEFT;
|
||||
|
||||
// Robot encoders
|
||||
public static final String LEFT_ENCODER = "encoder left";
|
||||
public static final String RIGHT_ENCODER = "encoder right";
|
||||
public static final String BACK_ENCODER = "encoder back";
|
||||
public static final Direction FRONT_RIGHT_MOTOR_DIRECTION = Direction.REVERSE;
|
||||
public static final Direction BACK_RIGHT_MOTOR_DIRECTION = Direction.REVERSE;
|
||||
|
||||
// Robot encoder direction
|
||||
public static final double LEFT_ENCODER_DIRECTION = Encoder.FORWARD;
|
||||
public static final double RIGHT_ENCODER_DIRECTION = Encoder.FORWARD;
|
||||
public static final double BACK_ENCODER_DIRECTION = Encoder.REVERSE;
|
||||
public static final double FRONT_LEFT_MOTOR_ENCODER = Encoder.FORWARD;
|
||||
public static final double BACK_LEFT_MOTOR_ENCODER = Encoder.FORWARD;
|
||||
public static final double FRONT_RIGHT_MOTOR_ENCODER = Encoder.FORWARD;
|
||||
public static final double BACK_RIGHT_MOTOR_ENCODER = Encoder.FORWARD;
|
||||
|
||||
/*
|
||||
Pedro's parameters
|
||||
*/
|
||||
|
||||
// The weight of the robot in Kilograms
|
||||
public static final double ROBOT_WEIGHT_IN_KG = 10.5;
|
||||
public static final double ROBOT_WEIGHT_IN_KG = 5.15;
|
||||
|
||||
// Maximum velocity of the robot going forward
|
||||
public static final double ROBOT_SPEED_FORWARD = 72.0693;
|
||||
public static final double ROBOT_SPEED_FORWARD = 66.6117;
|
||||
|
||||
// Maximum velocity of the robot going right
|
||||
public static final double ROBOT_SPEED_LATERAL = 24.1401;
|
||||
public static final double ROBOT_SPEED_LATERAL = 60.0671;
|
||||
|
||||
// Rate of deceleration when power is cut-off when the robot is moving forward
|
||||
public static final double FORWARD_ZERO_POWER_ACCEL = -74.3779;
|
||||
public static final double FORWARD_ZERO_POWER_ACCEL = -71.154;
|
||||
|
||||
// Rate of deceleration when power is cut-off when the robot is moving to the right
|
||||
public static final double LATERAL_ZERO_POWER_ACCEL = -111.8409;
|
||||
public static final double LATERAL_ZERO_POWER_ACCEL = -109.5358;
|
||||
|
||||
// Determines how fast your robot will decelerate as a factor of how fast your robot will coast to a stop
|
||||
public static final double ZERO_POWER_ACCEL_MULT = 4;
|
||||
public static final double ZERO_POWER_ACCEL_MULT = 4.0;
|
||||
|
||||
/* Centripetal force correction - increase if robot is correcting into the path
|
||||
- decrease if robot is correcting away from the path */
|
||||
|
@ -71,7 +71,8 @@ measurements will be in centimeters.
|
||||
of how fast your robot will coast to a stop. Honestly, this is up to you. I personally used 4, but
|
||||
what works best for you is most important. Higher numbers will cause a faster brake, but increase
|
||||
oscillations at the end. Lower numbers will do the opposite. This can be found on line `107` in
|
||||
`FollowerConstants`, named `zeroPowerAccelerationMultiplier`. The drive PID is much, much more sensitive than the others. For reference,
|
||||
`FollowerConstants`, named `zeroPowerAccelerationMultiplier`. The drive PID is much, much more
|
||||
* sensitive than the others. For reference,
|
||||
my P values were in the hundredths and thousandths place values, and my D values were in the hundred
|
||||
thousandths and millionths place values. To tune this, enable `useDrive`, `useHeading`, and
|
||||
`useTranslational` in the `Follower` dropdown in FTC Dashboard. Next, run `StraightBackAndForth`
|
||||
|
@ -5,9 +5,7 @@ import com.qualcomm.robotcore.hardware.HardwareMap;
|
||||
import com.qualcomm.robotcore.hardware.IMU;
|
||||
|
||||
import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers.ThreeWheelIMULocalizer;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers.ThreeWheelLocalizer;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers.TwoWheelLocalizer;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers.DriveEncoderLocalizer;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.MathFunctions;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Vector;
|
||||
|
||||
@ -69,7 +67,7 @@ public class PoseUpdater {
|
||||
*/
|
||||
public PoseUpdater(HardwareMap hardwareMap) {
|
||||
// TODO: replace the second argument with your preferred localizer
|
||||
this(hardwareMap, new ThreeWheelIMULocalizer(hardwareMap));
|
||||
this(hardwareMap, new DriveEncoderLocalizer(hardwareMap));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -1,11 +1,20 @@
|
||||
package org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers;
|
||||
|
||||
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.leftFrontMotorName;
|
||||
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.leftRearMotorName;
|
||||
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.rightFrontMotorName;
|
||||
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.rightRearMotorName;
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR;
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR_DIRECTION;
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR_ENCODER;
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR;
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR_DIRECTION;
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR_ENCODER;
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR;
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR_DIRECTION;
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR_ENCODER;
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR;
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR_DIRECTION;
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR_ENCODER;
|
||||
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.qualcomm.robotcore.hardware.DcMotor;
|
||||
import com.qualcomm.robotcore.hardware.DcMotorEx;
|
||||
import com.qualcomm.robotcore.hardware.HardwareMap;
|
||||
|
||||
@ -26,21 +35,21 @@ import org.firstinspires.ftc.teamcode.pedroPathing.util.NanoTimer;
|
||||
*/
|
||||
@Config
|
||||
public class DriveEncoderLocalizer extends Localizer {
|
||||
private HardwareMap hardwareMap;
|
||||
private final HardwareMap hardwareMap;
|
||||
private Pose startPose;
|
||||
private Pose displacementPose;
|
||||
private Pose currentVelocity;
|
||||
private Matrix prevRotationMatrix;
|
||||
private NanoTimer timer;
|
||||
private final NanoTimer timer;
|
||||
private long deltaTimeNano;
|
||||
private Encoder leftFront;
|
||||
private Encoder rightFront;
|
||||
private Encoder leftRear;
|
||||
private Encoder rightRear;
|
||||
private final Encoder leftFront;
|
||||
private final Encoder rightFront;
|
||||
private final Encoder leftRear;
|
||||
private final Encoder rightRear;
|
||||
private double totalHeading;
|
||||
public static double FORWARD_TICKS_TO_INCHES = 1;
|
||||
public static double STRAFE_TICKS_TO_INCHES = 1;
|
||||
public static double TURN_TICKS_TO_RADIANS = 1;
|
||||
public static double FORWARD_TICKS_TO_INCHES = -0.0058;
|
||||
public static double STRAFE_TICKS_TO_INCHES = -0.0054;
|
||||
public static double TURN_TICKS_TO_RADIANS = -0.0009;
|
||||
public static double ROBOT_WIDTH = 1;
|
||||
public static double ROBOT_LENGTH = 1;
|
||||
|
||||
@ -58,22 +67,32 @@ public class DriveEncoderLocalizer extends Localizer {
|
||||
* This creates a new DriveEncoderLocalizer from a HardwareMap and a Pose, with the Pose
|
||||
* specifying the starting pose of the localizer.
|
||||
*
|
||||
* @param map the HardwareMap
|
||||
* @param map the HardwareMap
|
||||
* @param setStartPose the Pose to start from
|
||||
*/
|
||||
public DriveEncoderLocalizer(HardwareMap map, Pose setStartPose) {
|
||||
hardwareMap = map;
|
||||
|
||||
leftFront = new Encoder(hardwareMap.get(DcMotorEx.class, leftFrontMotorName));
|
||||
leftRear = new Encoder(hardwareMap.get(DcMotorEx.class, leftRearMotorName));
|
||||
rightRear = new Encoder(hardwareMap.get(DcMotorEx.class, rightRearMotorName));
|
||||
rightFront = new Encoder(hardwareMap.get(DcMotorEx.class, rightFrontMotorName));
|
||||
leftFront = new Encoder(hardwareMap.get(DcMotorEx.class, FRONT_LEFT_MOTOR));
|
||||
leftRear = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_LEFT_MOTOR));
|
||||
rightRear = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_RIGHT_MOTOR));
|
||||
rightFront = new Encoder(hardwareMap.get(DcMotorEx.class, FRONT_RIGHT_MOTOR));
|
||||
|
||||
DcMotor leftFrontDrive = hardwareMap.get(DcMotor.class, FRONT_LEFT_MOTOR);
|
||||
DcMotor leftBackDrive = hardwareMap.get(DcMotor.class, BACK_LEFT_MOTOR);
|
||||
DcMotor rightFrontDrive = hardwareMap.get(DcMotor.class, FRONT_RIGHT_MOTOR);
|
||||
DcMotor rightBackDrive = hardwareMap.get(DcMotor.class, BACK_RIGHT_MOTOR);
|
||||
|
||||
leftFrontDrive.setDirection(FRONT_LEFT_MOTOR_DIRECTION);
|
||||
leftBackDrive.setDirection(BACK_LEFT_MOTOR_DIRECTION);
|
||||
rightFrontDrive.setDirection(FRONT_RIGHT_MOTOR_DIRECTION);
|
||||
rightBackDrive.setDirection(BACK_RIGHT_MOTOR_DIRECTION);
|
||||
|
||||
// TODO: reverse any encoders necessary
|
||||
leftFront.setDirection(Encoder.REVERSE);
|
||||
rightRear.setDirection(Encoder.REVERSE);
|
||||
leftRear.setDirection(Encoder.FORWARD);
|
||||
rightRear.setDirection(Encoder.FORWARD);
|
||||
leftFront.setDirection(FRONT_LEFT_MOTOR_ENCODER);
|
||||
rightFront.setDirection(FRONT_RIGHT_MOTOR_ENCODER);
|
||||
leftRear.setDirection(BACK_LEFT_MOTOR_ENCODER);
|
||||
rightRear.setDirection(BACK_RIGHT_MOTOR_ENCODER);
|
||||
|
||||
setStartPose(setStartPose);
|
||||
timer = new NanoTimer();
|
||||
@ -129,7 +148,7 @@ public class DriveEncoderLocalizer extends Localizer {
|
||||
* @param heading the rotation of the Matrix
|
||||
*/
|
||||
public void setPrevRotationMatrix(double heading) {
|
||||
prevRotationMatrix = new Matrix(3,3);
|
||||
prevRotationMatrix = new Matrix(3, 3);
|
||||
prevRotationMatrix.set(0, 0, Math.cos(heading));
|
||||
prevRotationMatrix.set(0, 1, -Math.sin(heading));
|
||||
prevRotationMatrix.set(1, 0, Math.sin(heading));
|
||||
@ -164,7 +183,7 @@ public class DriveEncoderLocalizer extends Localizer {
|
||||
Matrix globalDeltas;
|
||||
setPrevRotationMatrix(getPose().getHeading());
|
||||
|
||||
Matrix transformation = new Matrix(3,3);
|
||||
Matrix transformation = new Matrix(3, 3);
|
||||
if (Math.abs(robotDeltas.get(2, 0)) < 0.001) {
|
||||
transformation.set(0, 0, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
|
||||
transformation.set(0, 1, -robotDeltas.get(2, 0) / 2.0);
|
||||
@ -214,13 +233,13 @@ public class DriveEncoderLocalizer extends Localizer {
|
||||
* @return returns a Matrix containing the robot relative movement.
|
||||
*/
|
||||
public Matrix getRobotDeltas() {
|
||||
Matrix returnMatrix = new Matrix(3,1);
|
||||
Matrix returnMatrix = new Matrix(3, 1);
|
||||
// x/forward movement
|
||||
returnMatrix.set(0,0, FORWARD_TICKS_TO_INCHES * (leftFront.getDeltaPosition() + rightFront.getDeltaPosition() + leftRear.getDeltaPosition() + rightRear.getDeltaPosition()));
|
||||
returnMatrix.set(0, 0, FORWARD_TICKS_TO_INCHES * (leftFront.getDeltaPosition() + rightFront.getDeltaPosition() + leftRear.getDeltaPosition() + rightRear.getDeltaPosition()));
|
||||
//y/strafe movement
|
||||
returnMatrix.set(1,0, STRAFE_TICKS_TO_INCHES * (-leftFront.getDeltaPosition() + rightFront.getDeltaPosition() + leftRear.getDeltaPosition() - rightRear.getDeltaPosition()));
|
||||
returnMatrix.set(1, 0, STRAFE_TICKS_TO_INCHES * (-leftFront.getDeltaPosition() + rightFront.getDeltaPosition() + leftRear.getDeltaPosition() - rightRear.getDeltaPosition()));
|
||||
// theta/turning
|
||||
returnMatrix.set(2,0, TURN_TICKS_TO_RADIANS * ((-leftFront.getDeltaPosition() + rightFront.getDeltaPosition() - leftRear.getDeltaPosition() + rightRear.getDeltaPosition()) / (ROBOT_WIDTH + ROBOT_LENGTH)));
|
||||
returnMatrix.set(2, 0, TURN_TICKS_TO_RADIANS * ((-leftFront.getDeltaPosition() + rightFront.getDeltaPosition() - leftRear.getDeltaPosition() + rightRear.getDeltaPosition()) / (ROBOT_WIDTH + ROBOT_LENGTH)));
|
||||
return returnMatrix;
|
||||
}
|
||||
|
||||
|
@ -1,317 +0,0 @@
|
||||
package org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers;
|
||||
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.*;
|
||||
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.qualcomm.hardware.rev.RevHubOrientationOnRobot;
|
||||
import com.qualcomm.robotcore.hardware.DcMotorEx;
|
||||
import com.qualcomm.robotcore.hardware.HardwareMap;
|
||||
import com.qualcomm.robotcore.hardware.IMU;
|
||||
|
||||
import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Encoder;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Localizer;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Matrix;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.MathFunctions;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Vector;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.util.NanoTimer;
|
||||
|
||||
/**
|
||||
* This is the ThreeWheelIMULocalizer class. This class extends the Localizer superclass and is a
|
||||
* localizer that uses the three wheel odometry set up with the IMU to have more accurate heading
|
||||
* readings. The diagram below, which is modified from Road Runner, shows a typical set up.
|
||||
*
|
||||
* The view is from the top of the robot looking downwards.
|
||||
*
|
||||
* left on robot is the y positive direction
|
||||
*
|
||||
* forward on robot is the x positive direction
|
||||
*
|
||||
* /--------------\
|
||||
* | ____ |
|
||||
* | ---- |
|
||||
* | || || |
|
||||
* | || || | ----> left (y positive)
|
||||
* | |
|
||||
* | |
|
||||
* \--------------/
|
||||
* |
|
||||
* |
|
||||
* V
|
||||
* forward (x positive)
|
||||
*
|
||||
* @author Logan Nash
|
||||
* @author Anyi Lin - 10158 Scott's Bots
|
||||
* @version 1.0, 7/9/2024
|
||||
*/
|
||||
@Config
|
||||
public class ThreeWheelIMULocalizer extends Localizer {
|
||||
private HardwareMap hardwareMap;
|
||||
private Pose startPose;
|
||||
private Pose displacementPose;
|
||||
private Pose currentVelocity;
|
||||
private Matrix prevRotationMatrix;
|
||||
private NanoTimer timer;
|
||||
private long deltaTimeNano;
|
||||
private Encoder leftEncoder;
|
||||
private Encoder rightEncoder;
|
||||
private Encoder strafeEncoder;
|
||||
private Pose leftEncoderPose;
|
||||
private Pose rightEncoderPose;
|
||||
private Pose strafeEncoderPose;
|
||||
|
||||
public final IMU imu;
|
||||
private double previousIMUOrientation;
|
||||
private double deltaRadians;
|
||||
private double totalHeading;
|
||||
public static double FORWARD_TICKS_TO_INCHES = 0.004;//8192 * 1.37795 * 2 * Math.PI * 0.5008239963;
|
||||
public static double STRAFE_TICKS_TO_INCHES = -0.0036;//8192 * 1.37795 * 2 * Math.PI * 0.5018874659;
|
||||
public static double TURN_TICKS_TO_RADIANS = 0.0043;//8192 * 1.37795 * 2 * Math.PI * 0.5;
|
||||
|
||||
public static boolean useIMU = true;
|
||||
|
||||
/**
|
||||
* This creates a new ThreeWheelIMULocalizer from a HardwareMap, with a starting Pose at (0,0)
|
||||
* facing 0 heading.
|
||||
*
|
||||
* @param map the HardwareMap
|
||||
*/
|
||||
public ThreeWheelIMULocalizer(HardwareMap map) {
|
||||
this(map, new Pose());
|
||||
}
|
||||
|
||||
/**
|
||||
* This creates a new ThreeWheelIMULocalizer from a HardwareMap and a Pose, with the Pose
|
||||
* specifying the starting pose of the localizer.
|
||||
*
|
||||
* @param map the HardwareMap
|
||||
* @param setStartPose the Pose to start from
|
||||
*/
|
||||
public ThreeWheelIMULocalizer(HardwareMap map, Pose setStartPose) {
|
||||
hardwareMap = map;
|
||||
imu = hardwareMap.get(IMU.class, IMU);
|
||||
|
||||
// TODO: replace this with your IMU's orientation
|
||||
imu.initialize(new IMU.Parameters(new RevHubOrientationOnRobot(IMU_LOGO_FACING_DIRECTION, IMU_USB_FACING_DIRECTION)));
|
||||
|
||||
// TODO: replace these with your encoder positions
|
||||
leftEncoderPose = new Pose(-7.625, 6.19375, 0);
|
||||
rightEncoderPose = new Pose(-7.625, -6.19375, 0);
|
||||
strafeEncoderPose = new Pose(7, 1, Math.toRadians(90));
|
||||
|
||||
// TODO: replace these with your encoder ports
|
||||
leftEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, LEFT_ENCODER));
|
||||
rightEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, RIGHT_ENCODER));
|
||||
strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_ENCODER));
|
||||
|
||||
// TODO: reverse any encoders necessary
|
||||
leftEncoder.setDirection(LEFT_ENCODER_DIRECTION);
|
||||
rightEncoder.setDirection(RIGHT_ENCODER_DIRECTION);
|
||||
strafeEncoder.setDirection(BACK_ENCODER_DIRECTION);
|
||||
|
||||
setStartPose(setStartPose);
|
||||
timer = new NanoTimer();
|
||||
deltaTimeNano = 1;
|
||||
displacementPose = new Pose();
|
||||
currentVelocity = new Pose();
|
||||
totalHeading = 0;
|
||||
|
||||
resetEncoders();
|
||||
}
|
||||
|
||||
/**
|
||||
* This returns the current pose estimate.
|
||||
*
|
||||
* @return returns the current pose estimate as a Pose
|
||||
*/
|
||||
@Override
|
||||
public Pose getPose() {
|
||||
return MathFunctions.addPoses(startPose, displacementPose);
|
||||
}
|
||||
|
||||
/**
|
||||
* This returns the current velocity estimate.
|
||||
*
|
||||
* @return returns the current velocity estimate as a Pose
|
||||
*/
|
||||
@Override
|
||||
public Pose getVelocity() {
|
||||
return currentVelocity.copy();
|
||||
}
|
||||
|
||||
/**
|
||||
* This returns the current velocity estimate.
|
||||
*
|
||||
* @return returns the current velocity estimate as a Vector
|
||||
*/
|
||||
@Override
|
||||
public Vector getVelocityVector() {
|
||||
return currentVelocity.getVector();
|
||||
}
|
||||
|
||||
/**
|
||||
* This sets the start pose. Changing the start pose should move the robot as if all its
|
||||
* previous movements were displacing it from its new start pose.
|
||||
*
|
||||
* @param setStart the new start pose
|
||||
*/
|
||||
@Override
|
||||
public void setStartPose(Pose setStart) {
|
||||
startPose = setStart;
|
||||
}
|
||||
|
||||
/**
|
||||
* This sets the Matrix that contains the previous pose's heading rotation.
|
||||
*
|
||||
* @param heading the rotation of the Matrix
|
||||
*/
|
||||
public void setPrevRotationMatrix(double heading) {
|
||||
prevRotationMatrix = new Matrix(3,3);
|
||||
prevRotationMatrix.set(0, 0, Math.cos(heading));
|
||||
prevRotationMatrix.set(0, 1, -Math.sin(heading));
|
||||
prevRotationMatrix.set(1, 0, Math.sin(heading));
|
||||
prevRotationMatrix.set(1, 1, Math.cos(heading));
|
||||
prevRotationMatrix.set(2, 2, 1.0);
|
||||
}
|
||||
|
||||
/**
|
||||
* This sets the current pose estimate. Changing this should just change the robot's current
|
||||
* pose estimate, not anything to do with the start pose.
|
||||
*
|
||||
* @param setPose the new current pose estimate
|
||||
*/
|
||||
@Override
|
||||
public void setPose(Pose setPose) {
|
||||
displacementPose = MathFunctions.subtractPoses(setPose, startPose);
|
||||
resetEncoders();
|
||||
}
|
||||
|
||||
/**
|
||||
* This updates the elapsed time timer that keeps track of time between updates, as well as the
|
||||
* change position of the Encoders. Then, the robot's global change in position is calculated
|
||||
* using the pose exponential method.
|
||||
*/
|
||||
@Override
|
||||
public void update() {
|
||||
deltaTimeNano = timer.getElapsedTime();
|
||||
timer.resetTimer();
|
||||
|
||||
updateEncoders();
|
||||
Matrix robotDeltas = getRobotDeltas();
|
||||
Matrix globalDeltas;
|
||||
setPrevRotationMatrix(getPose().getHeading());
|
||||
|
||||
Matrix transformation = new Matrix(3,3);
|
||||
if (Math.abs(robotDeltas.get(2, 0)) < 0.001) {
|
||||
transformation.set(0, 0, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
|
||||
transformation.set(0, 1, -robotDeltas.get(2, 0) / 2.0);
|
||||
transformation.set(1, 0, robotDeltas.get(2, 0) / 2.0);
|
||||
transformation.set(1, 1, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
|
||||
transformation.set(2, 2, 1.0);
|
||||
} else {
|
||||
transformation.set(0, 0, Math.sin(robotDeltas.get(2, 0)) / robotDeltas.get(2, 0));
|
||||
transformation.set(0, 1, (Math.cos(robotDeltas.get(2, 0)) - 1.0) / robotDeltas.get(2, 0));
|
||||
transformation.set(1, 0, (1.0 - Math.cos(robotDeltas.get(2, 0))) / robotDeltas.get(2, 0));
|
||||
transformation.set(1, 1, Math.sin(robotDeltas.get(2, 0)) / robotDeltas.get(2, 0));
|
||||
transformation.set(2, 2, 1.0);
|
||||
}
|
||||
|
||||
globalDeltas = Matrix.multiply(Matrix.multiply(prevRotationMatrix, transformation), robotDeltas);
|
||||
|
||||
displacementPose.add(new Pose(globalDeltas.get(0, 0), globalDeltas.get(1, 0), globalDeltas.get(2, 0)));
|
||||
currentVelocity = new Pose(globalDeltas.get(0, 0) / (deltaTimeNano * Math.pow(10.0, 9)), globalDeltas.get(1, 0) / (deltaTimeNano * Math.pow(10.0, 9)), globalDeltas.get(2, 0) / (deltaTimeNano * Math.pow(10.0, 9)));
|
||||
|
||||
totalHeading += globalDeltas.get(2, 0);
|
||||
}
|
||||
|
||||
/**
|
||||
* This updates the Encoders.
|
||||
*/
|
||||
public void updateEncoders() {
|
||||
leftEncoder.update();
|
||||
rightEncoder.update();
|
||||
strafeEncoder.update();
|
||||
|
||||
double currentIMUOrientation = MathFunctions.normalizeAngle(imu.getRobotYawPitchRollAngles().getYaw(AngleUnit.RADIANS));
|
||||
deltaRadians = MathFunctions.getTurnDirection(previousIMUOrientation, currentIMUOrientation) * MathFunctions.getSmallestAngleDifference(currentIMUOrientation, previousIMUOrientation);
|
||||
previousIMUOrientation = currentIMUOrientation;
|
||||
}
|
||||
|
||||
/**
|
||||
* This resets the Encoders.
|
||||
*/
|
||||
public void resetEncoders() {
|
||||
leftEncoder.reset();
|
||||
rightEncoder.reset();
|
||||
strafeEncoder.reset();
|
||||
}
|
||||
|
||||
/**
|
||||
* This calculates the change in position from the perspective of the robot using information
|
||||
* from the Encoders.
|
||||
*
|
||||
* @return returns a Matrix containing the robot relative movement.
|
||||
*/
|
||||
public Matrix getRobotDeltas() {
|
||||
Matrix returnMatrix = new Matrix(3,1);
|
||||
// x/forward movement
|
||||
returnMatrix.set(0,0, FORWARD_TICKS_TO_INCHES * ((rightEncoder.getDeltaPosition() * leftEncoderPose.getY() - leftEncoder.getDeltaPosition() * rightEncoderPose.getY()) / (leftEncoderPose.getY() - rightEncoderPose.getY())));
|
||||
//y/strafe movement
|
||||
returnMatrix.set(1,0, STRAFE_TICKS_TO_INCHES * (strafeEncoder.getDeltaPosition() - strafeEncoderPose.getX() * ((rightEncoder.getDeltaPosition() - leftEncoder.getDeltaPosition()) / (leftEncoderPose.getY() - rightEncoderPose.getY()))));
|
||||
// theta/turning
|
||||
if (MathFunctions.getSmallestAngleDifference(0, deltaRadians) > 0.00005 && useIMU) {
|
||||
returnMatrix.set(2, 0, deltaRadians);
|
||||
} else {
|
||||
returnMatrix.set(2,0, TURN_TICKS_TO_RADIANS * ((rightEncoder.getDeltaPosition() - leftEncoder.getDeltaPosition()) / (leftEncoderPose.getY() - rightEncoderPose.getY())));
|
||||
}
|
||||
return returnMatrix;
|
||||
}
|
||||
|
||||
/**
|
||||
* This returns how far the robot has turned in radians, in a number not clamped between 0 and
|
||||
* 2 * pi radians. This is used for some tuning things and nothing actually within the following.
|
||||
*
|
||||
* @return returns how far the robot has turned in total, in radians.
|
||||
*/
|
||||
public double getTotalHeading() {
|
||||
return totalHeading;
|
||||
}
|
||||
|
||||
/**
|
||||
* This returns the multiplier applied to forward movement measurement to convert from encoder
|
||||
* ticks to inches. This is found empirically through a tuner.
|
||||
*
|
||||
* @return returns the forward ticks to inches multiplier
|
||||
*/
|
||||
public double getForwardMultiplier() {
|
||||
return FORWARD_TICKS_TO_INCHES;
|
||||
}
|
||||
|
||||
/**
|
||||
* This returns the multiplier applied to lateral/strafe movement measurement to convert from
|
||||
* encoder ticks to inches. This is found empirically through a tuner.
|
||||
*
|
||||
* @return returns the lateral/strafe ticks to inches multiplier
|
||||
*/
|
||||
public double getLateralMultiplier() {
|
||||
return STRAFE_TICKS_TO_INCHES;
|
||||
}
|
||||
|
||||
/**
|
||||
* This returns the multiplier applied to turning movement measurement to convert from encoder
|
||||
* ticks to radians. This is found empirically through a tuner.
|
||||
*
|
||||
* @return returns the turning ticks to radians multiplier
|
||||
*/
|
||||
public double getTurningMultiplier() {
|
||||
return TURN_TICKS_TO_RADIANS;
|
||||
}
|
||||
|
||||
/**
|
||||
* This resets the IMU.
|
||||
*/
|
||||
public void resetIMU() {
|
||||
imu.resetYaw();
|
||||
}
|
||||
}
|
@ -1,294 +0,0 @@
|
||||
package org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers;
|
||||
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.*;
|
||||
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.qualcomm.robotcore.hardware.DcMotorEx;
|
||||
import com.qualcomm.robotcore.hardware.HardwareMap;
|
||||
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Encoder;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Localizer;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Matrix;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.MathFunctions;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Vector;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.util.NanoTimer;
|
||||
|
||||
/**
|
||||
* This is the ThreeWheelLocalizer class. This class extends the Localizer superclass and is a
|
||||
* localizer that uses the three wheel odometry set up. The diagram below, which is modified from
|
||||
* Road Runner, shows a typical set up.
|
||||
*
|
||||
* The view is from the top of the robot looking downwards.
|
||||
*
|
||||
* left on robot is the y positive direction
|
||||
*
|
||||
* forward on robot is the x positive direction
|
||||
*
|
||||
* /--------------\
|
||||
* | ____ |
|
||||
* | ---- |
|
||||
* | || || |
|
||||
* | || || | ----> left (y positive)
|
||||
* | |
|
||||
* | |
|
||||
* \--------------/
|
||||
* |
|
||||
* |
|
||||
* V
|
||||
* forward (x positive)
|
||||
*
|
||||
* @author Anyi Lin - 10158 Scott's Bots
|
||||
* @version 1.0, 4/2/2024
|
||||
*/
|
||||
@Config
|
||||
public class ThreeWheelLocalizer extends Localizer {
|
||||
private HardwareMap hardwareMap;
|
||||
private Pose startPose;
|
||||
private Pose displacementPose;
|
||||
private Pose currentVelocity;
|
||||
private Matrix prevRotationMatrix;
|
||||
private NanoTimer timer;
|
||||
private long deltaTimeNano;
|
||||
private Encoder leftEncoder;
|
||||
private Encoder rightEncoder;
|
||||
private Encoder strafeEncoder;
|
||||
private Pose leftEncoderPose;
|
||||
private Pose rightEncoderPose;
|
||||
private Pose strafeEncoderPose;
|
||||
private double totalHeading;
|
||||
public static double FORWARD_TICKS_TO_INCHES = 0.00052189;//8192 * 1.37795 * 2 * Math.PI * 0.5008239963;
|
||||
public static double STRAFE_TICKS_TO_INCHES = 0.00052189;//8192 * 1.37795 * 2 * Math.PI * 0.5018874659;
|
||||
public static double TURN_TICKS_TO_RADIANS = 0.00053717;//8192 * 1.37795 * 2 * Math.PI * 0.5;
|
||||
|
||||
/**
|
||||
* This creates a new ThreeWheelLocalizer from a HardwareMap, with a starting Pose at (0,0)
|
||||
* facing 0 heading.
|
||||
*
|
||||
* @param map the HardwareMap
|
||||
*/
|
||||
public ThreeWheelLocalizer(HardwareMap map) {
|
||||
this(map, new Pose());
|
||||
}
|
||||
|
||||
/**
|
||||
* This creates a new ThreeWheelLocalizer from a HardwareMap and a Pose, with the Pose
|
||||
* specifying the starting pose of the localizer.
|
||||
*
|
||||
* @param map the HardwareMap
|
||||
* @param setStartPose the Pose to start from
|
||||
*/
|
||||
public ThreeWheelLocalizer(HardwareMap map, Pose setStartPose) {
|
||||
// TODO: replace these with your encoder positions
|
||||
leftEncoderPose = new Pose(-18.5/25.4 - 0.1, 164.4/25.4, 0);
|
||||
rightEncoderPose = new Pose(-18.4/25.4 - 0.1, -159.6/25.4, 0);
|
||||
strafeEncoderPose = new Pose(0*(-107.9/25.4+8)+-107.9/25.4+0.25, -1.1/25.4-0.23, Math.toRadians(90));
|
||||
|
||||
hardwareMap = map;
|
||||
|
||||
// TODO: replace these with your encoder ports
|
||||
leftEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, LEFT_ENCODER));
|
||||
rightEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, RIGHT_ENCODER));
|
||||
strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_ENCODER));
|
||||
|
||||
// TODO: reverse any encoders necessary
|
||||
//leftEncoder.setDirection(Encoder.REVERSE);
|
||||
// rightEncoder.setDirection(Encoder.REVERSE);
|
||||
//strafeEncoder.setDirection(Encoder.FORWARD);
|
||||
|
||||
setStartPose(setStartPose);
|
||||
timer = new NanoTimer();
|
||||
deltaTimeNano = 1;
|
||||
displacementPose = new Pose();
|
||||
currentVelocity = new Pose();
|
||||
totalHeading = 0;
|
||||
|
||||
resetEncoders();
|
||||
}
|
||||
|
||||
/**
|
||||
* This returns the current pose estimate.
|
||||
*
|
||||
* @return returns the current pose estimate as a Pose
|
||||
*/
|
||||
@Override
|
||||
public Pose getPose() {
|
||||
return MathFunctions.addPoses(startPose, displacementPose);
|
||||
}
|
||||
|
||||
/**
|
||||
* This returns the current velocity estimate.
|
||||
*
|
||||
* @return returns the current velocity estimate as a Pose
|
||||
*/
|
||||
@Override
|
||||
public Pose getVelocity() {
|
||||
return currentVelocity.copy();
|
||||
}
|
||||
|
||||
/**
|
||||
* This returns the current velocity estimate.
|
||||
*
|
||||
* @return returns the current velocity estimate as a Vector
|
||||
*/
|
||||
@Override
|
||||
public Vector getVelocityVector() {
|
||||
return currentVelocity.getVector();
|
||||
}
|
||||
|
||||
/**
|
||||
* This sets the start pose. Changing the start pose should move the robot as if all its
|
||||
* previous movements were displacing it from its new start pose.
|
||||
*
|
||||
* @param setStart the new start pose
|
||||
*/
|
||||
@Override
|
||||
public void setStartPose(Pose setStart) {
|
||||
startPose = setStart;
|
||||
}
|
||||
|
||||
/**
|
||||
* This sets the Matrix that contains the previous pose's heading rotation.
|
||||
*
|
||||
* @param heading the rotation of the Matrix
|
||||
*/
|
||||
public void setPrevRotationMatrix(double heading) {
|
||||
prevRotationMatrix = new Matrix(3,3);
|
||||
prevRotationMatrix.set(0, 0, Math.cos(heading));
|
||||
prevRotationMatrix.set(0, 1, -Math.sin(heading));
|
||||
prevRotationMatrix.set(1, 0, Math.sin(heading));
|
||||
prevRotationMatrix.set(1, 1, Math.cos(heading));
|
||||
prevRotationMatrix.set(2, 2, 1.0);
|
||||
}
|
||||
|
||||
/**
|
||||
* This sets the current pose estimate. Changing this should just change the robot's current
|
||||
* pose estimate, not anything to do with the start pose.
|
||||
*
|
||||
* @param setPose the new current pose estimate
|
||||
*/
|
||||
@Override
|
||||
public void setPose(Pose setPose) {
|
||||
displacementPose = MathFunctions.subtractPoses(setPose, startPose);
|
||||
resetEncoders();
|
||||
}
|
||||
|
||||
/**
|
||||
* This updates the elapsed time timer that keeps track of time between updates, as well as the
|
||||
* change position of the Encoders. Then, the robot's global change in position is calculated
|
||||
* using the pose exponential method.
|
||||
*/
|
||||
@Override
|
||||
public void update() {
|
||||
deltaTimeNano = timer.getElapsedTime();
|
||||
timer.resetTimer();
|
||||
|
||||
updateEncoders();
|
||||
Matrix robotDeltas = getRobotDeltas();
|
||||
Matrix globalDeltas;
|
||||
setPrevRotationMatrix(getPose().getHeading());
|
||||
|
||||
Matrix transformation = new Matrix(3,3);
|
||||
if (Math.abs(robotDeltas.get(2, 0)) < 0.001) {
|
||||
transformation.set(0, 0, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
|
||||
transformation.set(0, 1, -robotDeltas.get(2, 0) / 2.0);
|
||||
transformation.set(1, 0, robotDeltas.get(2, 0) / 2.0);
|
||||
transformation.set(1, 1, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
|
||||
transformation.set(2, 2, 1.0);
|
||||
} else {
|
||||
transformation.set(0, 0, Math.sin(robotDeltas.get(2, 0)) / robotDeltas.get(2, 0));
|
||||
transformation.set(0, 1, (Math.cos(robotDeltas.get(2, 0)) - 1.0) / robotDeltas.get(2, 0));
|
||||
transformation.set(1, 0, (1.0 - Math.cos(robotDeltas.get(2, 0))) / robotDeltas.get(2, 0));
|
||||
transformation.set(1, 1, Math.sin(robotDeltas.get(2, 0)) / robotDeltas.get(2, 0));
|
||||
transformation.set(2, 2, 1.0);
|
||||
}
|
||||
|
||||
globalDeltas = Matrix.multiply(Matrix.multiply(prevRotationMatrix, transformation), robotDeltas);
|
||||
|
||||
displacementPose.add(new Pose(globalDeltas.get(0, 0), globalDeltas.get(1, 0), globalDeltas.get(2, 0)));
|
||||
currentVelocity = new Pose(globalDeltas.get(0, 0) / (deltaTimeNano * Math.pow(10.0, 9)), globalDeltas.get(1, 0) / (deltaTimeNano * Math.pow(10.0, 9)), globalDeltas.get(2, 0) / (deltaTimeNano * Math.pow(10.0, 9)));
|
||||
|
||||
totalHeading += globalDeltas.get(2, 0);
|
||||
}
|
||||
|
||||
/**
|
||||
* This updates the Encoders.
|
||||
*/
|
||||
public void updateEncoders() {
|
||||
leftEncoder.update();
|
||||
rightEncoder.update();
|
||||
strafeEncoder.update();
|
||||
}
|
||||
|
||||
/**
|
||||
* This resets the Encoders.
|
||||
*/
|
||||
public void resetEncoders() {
|
||||
leftEncoder.reset();
|
||||
rightEncoder.reset();
|
||||
strafeEncoder.reset();
|
||||
}
|
||||
|
||||
/**
|
||||
* This calculates the change in position from the perspective of the robot using information
|
||||
* from the Encoders.
|
||||
*
|
||||
* @return returns a Matrix containing the robot relative movement.
|
||||
*/
|
||||
public Matrix getRobotDeltas() {
|
||||
Matrix returnMatrix = new Matrix(3,1);
|
||||
// x/forward movement
|
||||
returnMatrix.set(0,0, FORWARD_TICKS_TO_INCHES * ((rightEncoder.getDeltaPosition() * leftEncoderPose.getY() - leftEncoder.getDeltaPosition() * rightEncoderPose.getY()) / (leftEncoderPose.getY() - rightEncoderPose.getY())));
|
||||
//y/strafe movement
|
||||
returnMatrix.set(1,0, STRAFE_TICKS_TO_INCHES * (strafeEncoder.getDeltaPosition() - strafeEncoderPose.getX() * ((rightEncoder.getDeltaPosition() - leftEncoder.getDeltaPosition()) / (leftEncoderPose.getY() - rightEncoderPose.getY()))));
|
||||
// theta/turning
|
||||
returnMatrix.set(2,0, TURN_TICKS_TO_RADIANS * ((rightEncoder.getDeltaPosition() - leftEncoder.getDeltaPosition()) / (leftEncoderPose.getY() - rightEncoderPose.getY())));
|
||||
return returnMatrix;
|
||||
}
|
||||
|
||||
/**
|
||||
* This returns how far the robot has turned in radians, in a number not clamped between 0 and
|
||||
* 2 * pi radians. This is used for some tuning things and nothing actually within the following.
|
||||
*
|
||||
* @return returns how far the robot has turned in total, in radians.
|
||||
*/
|
||||
public double getTotalHeading() {
|
||||
return totalHeading;
|
||||
}
|
||||
|
||||
/**
|
||||
* This returns the multiplier applied to forward movement measurement to convert from encoder
|
||||
* ticks to inches. This is found empirically through a tuner.
|
||||
*
|
||||
* @return returns the forward ticks to inches multiplier
|
||||
*/
|
||||
public double getForwardMultiplier() {
|
||||
return FORWARD_TICKS_TO_INCHES;
|
||||
}
|
||||
|
||||
/**
|
||||
* This returns the multiplier applied to lateral/strafe movement measurement to convert from
|
||||
* encoder ticks to inches. This is found empirically through a tuner.
|
||||
*
|
||||
* @return returns the lateral/strafe ticks to inches multiplier
|
||||
*/
|
||||
public double getLateralMultiplier() {
|
||||
return STRAFE_TICKS_TO_INCHES;
|
||||
}
|
||||
|
||||
/**
|
||||
* This returns the multiplier applied to turning movement measurement to convert from encoder
|
||||
* ticks to radians. This is found empirically through a tuner.
|
||||
*
|
||||
* @return returns the turning ticks to radians multiplier
|
||||
*/
|
||||
public double getTurningMultiplier() {
|
||||
return TURN_TICKS_TO_RADIANS;
|
||||
}
|
||||
|
||||
/**
|
||||
* This does nothing since this localizer does not use the IMU.
|
||||
*/
|
||||
public void resetIMU() {
|
||||
}
|
||||
}
|
@ -1,302 +0,0 @@
|
||||
package org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers;
|
||||
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_ENCODER;
|
||||
import static org.firstinspires.ftc.teamcode.PedroConstants.LEFT_ENCODER;
|
||||
|
||||
import com.acmerobotics.dashboard.config.Config;
|
||||
import com.qualcomm.hardware.rev.RevHubOrientationOnRobot;
|
||||
import com.qualcomm.robotcore.hardware.DcMotorEx;
|
||||
import com.qualcomm.robotcore.hardware.HardwareMap;
|
||||
import com.qualcomm.robotcore.hardware.IMU;
|
||||
|
||||
import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Encoder;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Localizer;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Matrix;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.MathFunctions;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Vector;
|
||||
import org.firstinspires.ftc.teamcode.pedroPathing.util.NanoTimer;
|
||||
|
||||
/**
|
||||
* This is the TwoWheelLocalizer class. This class extends the Localizer superclass and is a
|
||||
* localizer that uses the two wheel odometry with IMU set up. The diagram below, which is modified from
|
||||
* Road Runner, shows a typical set up.
|
||||
*
|
||||
* The view is from the top of the robot looking downwards.
|
||||
*
|
||||
* left on robot is the y positive direction
|
||||
*
|
||||
* forward on robot is the x positive direction
|
||||
*
|
||||
* /--------------\
|
||||
* | ____ |
|
||||
* | ---- |
|
||||
* | || || |
|
||||
* | || || | ----> left (y positive)
|
||||
* | |
|
||||
* | |
|
||||
* \--------------/
|
||||
* |
|
||||
* |
|
||||
* V
|
||||
* forward (x positive)
|
||||
*
|
||||
* @author Anyi Lin - 10158 Scott's Bots
|
||||
* @version 1.0, 4/2/2024
|
||||
*/
|
||||
@Config
|
||||
public class TwoWheelLocalizer extends Localizer { // todo: make two wheel odo work
|
||||
private HardwareMap hardwareMap;
|
||||
private IMU imu;
|
||||
private Pose startPose;
|
||||
private Pose displacementPose;
|
||||
private Pose currentVelocity;
|
||||
private Matrix prevRotationMatrix;
|
||||
private NanoTimer timer;
|
||||
private long deltaTimeNano;
|
||||
private Encoder forwardEncoder;
|
||||
private Encoder strafeEncoder;
|
||||
private Pose forwardEncoderPose;
|
||||
private Pose strafeEncoderPose;
|
||||
private double previousIMUOrientation;
|
||||
private double deltaRadians;
|
||||
private double totalHeading;
|
||||
public static double FORWARD_TICKS_TO_INCHES = 8192 * 1.37795 * 2 * Math.PI * 0.5008239963;
|
||||
public static double STRAFE_TICKS_TO_INCHES = 8192 * 1.37795 * 2 * Math.PI * 0.5018874659;
|
||||
|
||||
/**
|
||||
* This creates a new TwoWheelLocalizer from a HardwareMap, with a starting Pose at (0,0)
|
||||
* facing 0 heading.
|
||||
*
|
||||
* @param map the HardwareMap
|
||||
*/
|
||||
public TwoWheelLocalizer(HardwareMap map) {
|
||||
this(map, new Pose());
|
||||
}
|
||||
|
||||
/**
|
||||
* This creates a new TwoWheelLocalizer from a HardwareMap and a Pose, with the Pose
|
||||
* specifying the starting pose of the localizer.
|
||||
*
|
||||
* @param map the HardwareMap
|
||||
* @param setStartPose the Pose to start from
|
||||
*/
|
||||
public TwoWheelLocalizer(HardwareMap map, Pose setStartPose) {
|
||||
// TODO: replace these with your encoder positions
|
||||
forwardEncoderPose = new Pose(-18.5/25.4 - 0.1, 164.4/25.4, 0);
|
||||
strafeEncoderPose = new Pose(-107.9/25.4+0.25, -1.1/25.4-0.23, Math.toRadians(90));
|
||||
|
||||
hardwareMap = map;
|
||||
|
||||
imu = hardwareMap.get(IMU.class, "imu");
|
||||
// TODO: replace this with your IMU's orientation
|
||||
imu.initialize(new IMU.Parameters(new RevHubOrientationOnRobot(RevHubOrientationOnRobot.LogoFacingDirection.UP, RevHubOrientationOnRobot.UsbFacingDirection.LEFT)));
|
||||
|
||||
// TODO: replace these with your encoder ports
|
||||
forwardEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, LEFT_ENCODER));
|
||||
strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_ENCODER));
|
||||
|
||||
// TODO: reverse any encoders necessary
|
||||
forwardEncoder.setDirection(Encoder.REVERSE);
|
||||
strafeEncoder.setDirection(Encoder.FORWARD);
|
||||
|
||||
setStartPose(setStartPose);
|
||||
timer = new NanoTimer();
|
||||
deltaTimeNano = 1;
|
||||
displacementPose = new Pose();
|
||||
currentVelocity = new Pose();
|
||||
|
||||
previousIMUOrientation = MathFunctions.normalizeAngle(imu.getRobotYawPitchRollAngles().getYaw(AngleUnit.RADIANS));
|
||||
deltaRadians = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* This returns the current pose estimate.
|
||||
*
|
||||
* @return returns the current pose estimate as a Pose
|
||||
*/
|
||||
@Override
|
||||
public Pose getPose() {
|
||||
return MathFunctions.addPoses(startPose, displacementPose);
|
||||
}
|
||||
|
||||
/**
|
||||
* This returns the current velocity estimate.
|
||||
*
|
||||
* @return returns the current velocity estimate as a Pose
|
||||
*/
|
||||
@Override
|
||||
public Pose getVelocity() {
|
||||
return currentVelocity.copy();
|
||||
}
|
||||
|
||||
/**
|
||||
* This returns the current velocity estimate.
|
||||
*
|
||||
* @return returns the current velocity estimate as a Vector
|
||||
*/
|
||||
@Override
|
||||
public Vector getVelocityVector() {
|
||||
return currentVelocity.getVector();
|
||||
}
|
||||
|
||||
/**
|
||||
* This sets the start pose. Changing the start pose should move the robot as if all its
|
||||
* previous movements were displacing it from its new start pose.
|
||||
*
|
||||
* @param setStart the new start pose
|
||||
*/
|
||||
@Override
|
||||
public void setStartPose(Pose setStart) {
|
||||
startPose = setStart;
|
||||
}
|
||||
|
||||
/**
|
||||
* This sets the Matrix that contains the previous pose's heading rotation.
|
||||
*
|
||||
* @param heading the rotation of the Matrix
|
||||
*/
|
||||
public void setPrevRotationMatrix(double heading) {
|
||||
prevRotationMatrix = new Matrix(3,3);
|
||||
prevRotationMatrix.set(0, 0, Math.cos(heading));
|
||||
prevRotationMatrix.set(0, 1, -Math.sin(heading));
|
||||
prevRotationMatrix.set(1, 0, Math.sin(heading));
|
||||
prevRotationMatrix.set(1, 1, Math.cos(heading));
|
||||
prevRotationMatrix.set(2, 2, 1.0);
|
||||
}
|
||||
|
||||
/**
|
||||
* This sets the current pose estimate. Changing this should just change the robot's current
|
||||
* pose estimate, not anything to do with the start pose.
|
||||
*
|
||||
* @param setPose the new current pose estimate
|
||||
*/
|
||||
@Override
|
||||
public void setPose(Pose setPose) {
|
||||
displacementPose = MathFunctions.subtractPoses(setPose, startPose);
|
||||
resetEncoders();
|
||||
}
|
||||
|
||||
/**
|
||||
* This updates the elapsed time timer that keeps track of time between updates, as well as the
|
||||
* change position of the Encoders and the IMU readings. Then, the robot's global change in
|
||||
* position is calculated using the pose exponential method.
|
||||
*/
|
||||
@Override
|
||||
public void update() {
|
||||
deltaTimeNano = timer.getElapsedTime();
|
||||
timer.resetTimer();
|
||||
|
||||
updateEncoders();
|
||||
Matrix robotDeltas = getRobotDeltas();
|
||||
Matrix globalDeltas;
|
||||
setPrevRotationMatrix(getPose().getHeading());
|
||||
|
||||
Matrix transformation = new Matrix(3,3);
|
||||
if (Math.abs(robotDeltas.get(2, 0)) < 0.001) {
|
||||
transformation.set(0, 0, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
|
||||
transformation.set(0, 1, -robotDeltas.get(2, 0) / 2.0);
|
||||
transformation.set(1, 0, robotDeltas.get(2, 0) / 2.0);
|
||||
transformation.set(1, 1, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
|
||||
transformation.set(2, 2, 1.0);
|
||||
} else {
|
||||
transformation.set(0, 0, Math.sin(robotDeltas.get(2, 0)) / robotDeltas.get(2, 0));
|
||||
transformation.set(0, 1, (Math.cos(robotDeltas.get(2, 0)) - 1.0) / robotDeltas.get(2, 0));
|
||||
transformation.set(1, 0, (1.0 - Math.cos(robotDeltas.get(2, 0))) / robotDeltas.get(2, 0));
|
||||
transformation.set(1, 1, Math.sin(robotDeltas.get(2, 0)) / robotDeltas.get(2, 0));
|
||||
transformation.set(2, 2, 1.0);
|
||||
}
|
||||
|
||||
globalDeltas = Matrix.multiply(Matrix.multiply(prevRotationMatrix, transformation), robotDeltas);
|
||||
|
||||
displacementPose.add(new Pose(globalDeltas.get(0, 0), globalDeltas.get(1, 0), globalDeltas.get(2, 0)));
|
||||
currentVelocity = new Pose(globalDeltas.get(0, 0) / (deltaTimeNano * Math.pow(10.0, 9)), globalDeltas.get(1, 0) / (deltaTimeNano * Math.pow(10.0, 9)), globalDeltas.get(2, 0) / (deltaTimeNano * Math.pow(10.0, 9)));
|
||||
|
||||
totalHeading += globalDeltas.get(2, 0);
|
||||
}
|
||||
|
||||
/**
|
||||
* This updates the Encoders as well as the IMU.
|
||||
*/
|
||||
public void updateEncoders() {
|
||||
forwardEncoder.update();
|
||||
strafeEncoder.update();
|
||||
|
||||
double currentIMUOrientation = MathFunctions.normalizeAngle(imu.getRobotYawPitchRollAngles().getYaw(AngleUnit.RADIANS));
|
||||
deltaRadians = MathFunctions.getTurnDirection(previousIMUOrientation, currentIMUOrientation) * MathFunctions.getSmallestAngleDifference(currentIMUOrientation, previousIMUOrientation);
|
||||
previousIMUOrientation = currentIMUOrientation;
|
||||
}
|
||||
|
||||
/**
|
||||
* This resets the Encoders.
|
||||
*/
|
||||
public void resetEncoders() {
|
||||
forwardEncoder.reset();
|
||||
strafeEncoder.reset();
|
||||
}
|
||||
|
||||
/**
|
||||
* This calculates the change in position from the perspective of the robot using information
|
||||
* from the Encoders and IMU.
|
||||
*
|
||||
* @return returns a Matrix containing the robot relative movement.
|
||||
*/
|
||||
public Matrix getRobotDeltas() {
|
||||
Matrix returnMatrix = new Matrix(3,1);
|
||||
// x/forward movement
|
||||
returnMatrix.set(0,0, FORWARD_TICKS_TO_INCHES * (forwardEncoder.getDeltaPosition() - forwardEncoderPose.getY() * deltaRadians));
|
||||
//y/strafe movement
|
||||
returnMatrix.set(1,0, STRAFE_TICKS_TO_INCHES * (strafeEncoder.getDeltaPosition() - strafeEncoderPose.getX() * deltaRadians));
|
||||
// theta/turning
|
||||
returnMatrix.set(2,0, deltaRadians);
|
||||
return returnMatrix;
|
||||
}
|
||||
|
||||
/**
|
||||
* This returns how far the robot has turned in radians, in a number not clamped between 0 and
|
||||
* 2 * pi radians. This is used for some tuning things and nothing actually within the following.
|
||||
*
|
||||
* @return returns how far the robot has turned in total, in radians.
|
||||
*/
|
||||
public double getTotalHeading() {
|
||||
return totalHeading;
|
||||
}
|
||||
|
||||
/**
|
||||
* This returns the multiplier applied to forward movement measurement to convert from encoder
|
||||
* ticks to inches. This is found empirically through a tuner.
|
||||
*
|
||||
* @return returns the forward ticks to inches multiplier
|
||||
*/
|
||||
public double getForwardMultiplier() {
|
||||
return FORWARD_TICKS_TO_INCHES;
|
||||
}
|
||||
|
||||
/**
|
||||
* This returns the multiplier applied to lateral/strafe movement measurement to convert from
|
||||
* encoder ticks to inches. This is found empirically through a tuner.
|
||||
*
|
||||
* @return returns the lateral/strafe ticks to inches multiplier
|
||||
*/
|
||||
public double getLateralMultiplier() {
|
||||
return STRAFE_TICKS_TO_INCHES;
|
||||
}
|
||||
|
||||
/**
|
||||
* This returns the multiplier applied to turning movement measurement to convert from encoder
|
||||
* ticks to radians. This is found empirically through a tuner.
|
||||
*
|
||||
* @return returns the turning ticks to radians multiplier
|
||||
*/
|
||||
public double getTurningMultiplier() {
|
||||
return 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* This resets the IMU.
|
||||
*/
|
||||
public void resetIMU() {
|
||||
imu.resetYaw();
|
||||
}
|
||||
}
|
@ -63,6 +63,7 @@ public class LateralTuner extends OpMode {
|
||||
telemetryA.addData("distance moved", poseUpdater.getPose().getY());
|
||||
telemetryA.addLine("The multiplier will display what your strafe ticks to inches should be to scale your current distance to " + DISTANCE + " inches.");
|
||||
telemetryA.addData("multiplier", DISTANCE / (poseUpdater.getPose().getY() / poseUpdater.getLocalizer().getLateralMultiplier()));
|
||||
|
||||
telemetryA.update();
|
||||
|
||||
Drawing.drawPoseHistory(dashboardPoseTracker, "#4CAF50");
|
||||
|
@ -58,9 +58,6 @@ public class LocalizationTest extends OpMode {
|
||||
rightRear = hardwareMap.get(DcMotorEx.class, rightRearMotorName);
|
||||
rightFront = hardwareMap.get(DcMotorEx.class, rightFrontMotorName);
|
||||
|
||||
leftFront.setDirection(DcMotorSimple.Direction.REVERSE);
|
||||
leftRear.setDirection(DcMotorSimple.Direction.REVERSE);
|
||||
|
||||
motors = Arrays.asList(leftFront, leftRear, rightFront, rightRear);
|
||||
|
||||
for (DcMotorEx motor : motors) {
|
||||
|
@ -202,9 +202,9 @@ public class FollowerConstants {
|
||||
|
||||
// Secondary drive PIDF coefficients
|
||||
public static CustomFilteredPIDFCoefficients secondaryDrivePIDFCoefficients = new CustomFilteredPIDFCoefficients(
|
||||
0.02,
|
||||
0.00315,
|
||||
0,
|
||||
0.000005,
|
||||
0.0001,
|
||||
0.6,
|
||||
0);
|
||||
|
||||
|
@ -119,6 +119,13 @@ public class LateralZeroPowerAccelerationTuner extends OpMode {
|
||||
*/
|
||||
@Override
|
||||
public void loop() {
|
||||
|
||||
telemetry.addData("x",poseUpdater.getPose().getX());
|
||||
telemetry.addData("y",poseUpdater.getPose().getY());
|
||||
telemetry.addData("heading",poseUpdater.getPose().getHeading());
|
||||
telemetry.addData("velo mag", poseUpdater.getVelocity().getMagnitude());
|
||||
telemetry.addData("velo theta", poseUpdater.getVelocity().getTheta());
|
||||
|
||||
if (gamepad1.cross || gamepad1.a) {
|
||||
requestOpModeStop();
|
||||
}
|
||||
|
@ -6,14 +6,14 @@ repositories {
|
||||
}
|
||||
|
||||
dependencies {
|
||||
implementation 'org.firstinspires.ftc:Inspection:10.0.0'
|
||||
implementation 'org.firstinspires.ftc:Blocks:10.0.0'
|
||||
implementation 'org.firstinspires.ftc:RobotCore:10.0.0'
|
||||
implementation 'org.firstinspires.ftc:RobotServer:10.0.0'
|
||||
implementation 'org.firstinspires.ftc:OnBotJava:10.0.0'
|
||||
implementation 'org.firstinspires.ftc:Hardware:10.0.0'
|
||||
implementation 'org.firstinspires.ftc:FtcCommon:10.0.0'
|
||||
implementation 'org.firstinspires.ftc:Vision:10.0.0'
|
||||
implementation 'org.firstinspires.ftc:Inspection:10.1.0'
|
||||
implementation 'org.firstinspires.ftc:Blocks:10.1.0'
|
||||
implementation 'org.firstinspires.ftc:RobotCore:10.1.0'
|
||||
implementation 'org.firstinspires.ftc:RobotServer:10.1.0'
|
||||
implementation 'org.firstinspires.ftc:OnBotJava:10.1.0'
|
||||
implementation 'org.firstinspires.ftc:Hardware:10.1.0'
|
||||
implementation 'org.firstinspires.ftc:FtcCommon:10.1.0'
|
||||
implementation 'org.firstinspires.ftc:Vision:10.1.0'
|
||||
implementation 'androidx.appcompat:appcompat:1.2.0'
|
||||
|
||||
implementation 'com.acmerobotics.dashboard:dashboard:0.4.5'
|
||||
|
Reference in New Issue
Block a user