27 Commits

Author SHA1 Message Date
c9ffd4f061 Added driver hub config naming 2024-12-17 21:35:16 -08:00
021dfa7222 Added lift configurations 2024-12-17 21:34:49 -08:00
233b177cf6 Removing more files to keep things light for this branch 2024-12-17 21:32:10 -08:00
0ab402af0f Lightening the load and configured the robot with appropriate values (encoders/motors) 2024-12-17 19:07:34 -08:00
aa496b8237 Ollie's work committed 2024-12-08 12:48:30 -08:00
66f3339e26 Working Pre loaded auto! Can score 11 points consistently! 2024-11-14 17:10:46 -08:00
ad0a8d3374 Merge remote-tracking branch 'origin/branch-silver-14493' into branch-silver-14493 2024-11-14 16:23:46 -08:00
dc71eb4317 Feature where driver can override centricity (robot vs field). 2024-11-13 15:09:59 -08:00
94144780b8 Tentative fix for robot/runBlocking problem as per issue #2 2024-11-13 09:13:24 -08:00
a362d2e004 Massive upgrade and shift of files 2024-11-12 23:16:23 -08:00
2008c3cd88 Working somehitng i don't know 2024-11-12 16:55:35 -08:00
c5be3cd932 Silver Branch Code 2024-11-03 09:13:37 -08:00
7d83b9c254 Add sample cometbot package 2024-10-31 15:37:09 -07:00
5f50d053c5 Merge remote-tracking branch 'origin/branch-silver-14493' into branch-silver-14493
# Conflicts:
#	TeamCode/src/main/java/org/firstinspires/ftc/teamcode/pedroPathing/tuning/FollowerConstants.java
2024-10-21 21:57:45 -07:00
0cfb57c643 Merge remote-tracking branch 'origin/branch-silver-14493' into branch-silver-14493 2024-10-17 11:07:25 -07:00
50db1f9175 Add new files (2nd try) 2024-10-17 11:07:10 -07:00
552bb3e25a Add new files 2024-10-17 11:06:13 -07:00
c1076a832c Rebased changes 2024-10-17 11:05:12 -07:00
7bf8b0c357 Add files 2024-10-17 11:04:02 -07:00
adfab3e8af Add sample code 2024-10-15 15:44:49 -07:00
0f7ea50907 Updated constants for silver and it, somehow, works 2024-10-15 15:43:53 -07:00
239f168540 Retuned to success, PIDF (P = .05) and translationalPIDFeedForward is back to 0 2024-10-15 13:59:02 -07:00
f2bcdcc55a Add constants 2024-10-01 17:05:54 -07:00
e08aac773d Static entries for arm servos 2024-10-01 15:45:02 -07:00
3950a83ac1 Added encoder naming and usage 2024-10-01 10:19:40 -07:00
552ff3f339 Updated to 10.1 2024-09-30 22:37:16 -07:00
4eef485dab Re-wired and reconfigured 2024-09-30 20:39:24 -07:00
25 changed files with 1596 additions and 714 deletions

View File

@ -1,122 +0,0 @@
package org.firstinspires.ftc.teamcode;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.config.Config;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
/**
* This is the Circle autonomous OpMode. It runs the robot in a PathChain that's actually not quite
* a circle, but some Bezier curves that have control points set essentially in a square. However,
* it turns enough to tune your centripetal force correction and some of your heading. Some lag in
* heading is to be expected.
*
* @author Anyi Lin - 10158 Scott's Bots
* @author Aaron Yang - 10158 Scott's Bots
* @author Harrison Womack - 10158 Scott's Bots
* @version 1.0, 3/12/2024
*/
@Config
@Autonomous(name = "AutoExample", group = "Autonomous Pathing Tuning")
public class AutoExample extends OpMode {
private Telemetry telemetryA;
private Follower follower;
private PathChain path;
private final Pose startPose = new Pose(12.0, 11, 90);
/**
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
* initializes the FTC Dashboard telemetry.
*/
@Override
public void init() {
follower = new Follower(hardwareMap);
follower.setMaxPower(.6);
follower.setStartingPose(startPose);
path = follower.pathBuilder()
.addPath(
// Line 1
new BezierLine(
new Point(12.804, 11.223, Point.CARTESIAN),
new Point(12.804, 42.362, Point.CARTESIAN)
)
)
.setTangentHeadingInterpolation()
.addPath(
// Line 2
new BezierCurve(
new Point(12.804, 42.362, Point.CARTESIAN),
new Point(11.381, 57.379, Point.CARTESIAN),
new Point(31.614, 56.588, Point.CARTESIAN)
)
)
.setTangentHeadingInterpolation()
.addPath(
// Line 3
new BezierLine(
new Point(31.614, 56.588, Point.CARTESIAN),
new Point(51.214, 56.746, Point.CARTESIAN)
)
)
.setTangentHeadingInterpolation()
.addPath(
// Line 4
new BezierCurve(
new Point(51.214, 56.746, Point.CARTESIAN),
new Point(64.334, 58.643, Point.CARTESIAN),
new Point(61.172, 45.524, Point.CARTESIAN)
)
)
.setTangentHeadingInterpolation()
.addPath(
// Line 5
new BezierCurve(
new Point(61.172, 45.524, Point.CARTESIAN),
new Point(36.198, 26.239, Point.CARTESIAN),
new Point(19.759, 11.065, Point.CARTESIAN)
)
)
.setTangentHeadingInterpolation()
.build();
follower.followPath(path);
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
telemetryA.update();
}
/**
* This runs the OpMode, updating the Follower as well as printing out the debug statements to
* the Telemetry, as well as the FTC Dashboard.
*/
@Override
public void loop() {
follower.update();
if (follower.atParametricEnd()) {
follower.followPath(path);
}
follower.telemetryDebug(telemetryA);
}
}

View File

@ -1,80 +0,0 @@
package org.firstinspires.ftc.teamcode;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.config.Config;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
/**
* This is the Circle autonomous OpMode. It runs the robot in a PathChain that's actually not quite
* a circle, but some Bezier curves that have control points set essentially in a square. However,
* it turns enough to tune your centripetal force correction and some of your heading. Some lag in
* heading is to be expected.
*
* @author Anyi Lin - 10158 Scott's Bots
* @author Aaron Yang - 10158 Scott's Bots
* @author Harrison Womack - 10158 Scott's Bots
* @version 1.0, 3/12/2024
*/
@Config
@Autonomous(name = "AutoExampleThree", group = "Autonomous Pathing Tuning")
public class AutoExampleThree extends OpMode {
private Telemetry telemetryA;
private Follower follower;
private PathChain path;
private final Pose startPose = new Pose(10.0, 40, 90);
/**
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
* initializes the FTC Dashboard telemetry.
*/
@Override
public void init() {
follower = new Follower(hardwareMap);
follower.setMaxPower(.4);
follower.setStartingPose(startPose);
path = follower.pathBuilder()
.addPath(
// Line 1
new BezierCurve(
new Point(10.000, 20.000, Point.CARTESIAN),
new Point(29.089, 61.232, Point.CARTESIAN),
new Point(48.054, 19.607, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90)).build();
follower.followPath(path);
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
telemetryA.update();
}
/**
* This runs the OpMode, updating the Follower as well as printing out the debug statements to
* the Telemetry, as well as the FTC Dashboard.
*/
@Override
public void loop() {
follower.update();
if (follower.atParametricEnd()) {
follower.followPath(path);
}
follower.telemetryDebug(telemetryA);
}
}

View File

@ -1,95 +0,0 @@
package org.firstinspires.ftc.teamcode;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.config.Config;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
/**
* This is the Circle autonomous OpMode. It runs the robot in a PathChain that's actually not quite
* a circle, but some Bezier curves that have control points set essentially in a square. However,
* it turns enough to tune your centripetal force correction and some of your heading. Some lag in
* heading is to be expected.
*
* @author Anyi Lin - 10158 Scott's Bots
* @author Aaron Yang - 10158 Scott's Bots
* @author Harrison Womack - 10158 Scott's Bots
* @version 1.0, 3/12/2024
*/
@Config
@Autonomous(name = "AutoExampleTwo", group = "Autonomous Pathing Tuning")
public class AutoExampleTwo extends OpMode {
private Telemetry telemetryA;
private Follower follower;
private PathChain path;
private final Pose startPose = new Pose(10.0, 40, 90);
/**
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
* initializes the FTC Dashboard telemetry.
*/
@Override
public void init() {
follower = new Follower(hardwareMap);
follower.setMaxPower(.4);
follower.setStartingPose(startPose);
path = follower.pathBuilder()
.addPath(
// Line 1
new BezierLine(
new Point(10.000, 40.000, Point.CARTESIAN),
new Point(60.000, 40.000, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 2
new BezierLine(
new Point(60.000, 40.000, Point.CARTESIAN),
new Point(60.000, 25.000, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 3
new BezierLine(
new Point(60.000, 25.000, Point.CARTESIAN),
new Point(10.000, 25.000, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90)).build();
follower.followPath(path);
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
telemetryA.update();
}
/**
* This runs the OpMode, updating the Follower as well as printing out the debug statements to
* the Telemetry, as well as the FTC Dashboard.
*/
@Override
public void loop() {
follower.update();
if (follower.atParametricEnd()) {
follower.followPath(path);
}
follower.telemetryDebug(telemetryA);
}
}

View File

@ -1,247 +0,0 @@
package org.firstinspires.ftc.teamcode;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.config.Config;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
/**
* This is the Circle autonomous OpMode. It runs the robot in a PathChain that's actually not quite
* a circle, but some Bezier curves that have control points set essentially in a square. However,
* it turns enough to tune your centripetal force correction and some of your heading. Some lag in
* heading is to be expected.
*
* @author Anyi Lin - 10158 Scott's Bots
* @author Aaron Yang - 10158 Scott's Bots
* @author Harrison Womack - 10158 Scott's Bots
* @version 1.0, 3/12/2024
*/
@Config
@Autonomous(name = "BluebAutoV1", group = "Autonomous Pathing Tuning")
public class BluebAutoV1 extends OpMode {
private Telemetry telemetryA;
private Follower follower;
private PathChain path;
private final Pose startPose = new Pose(7.5, 72, 90);
/**
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
* initializes the FTC Dashboard telemetry.
*/
@Override
public void init() {
follower = new Follower(hardwareMap);
follower.setMaxPower(.4);
follower.setStartingPose(startPose);
path = follower.pathBuilder()
.addPath(
// Line 1
new BezierLine(
new Point(7.5, 72, Point.CARTESIAN),
new Point(29.893, 38.250, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 2
new BezierLine(
new Point(29.893, 38.250, Point.CARTESIAN),
new Point(65.250, 32.143, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 3
new BezierLine(
new Point(65.250, 32.143, Point.CARTESIAN),
new Point(61.714, 24.429, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 4
new BezierLine(
new Point(61.714, 24.429, Point.CARTESIAN),
new Point(13.821, 22.821, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 5
new BezierLine(
new Point(13.821, 22.821, Point.CARTESIAN),
new Point(61.714, 24.429, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 6
new BezierLine(
new Point(61.714, 24.429, Point.CARTESIAN),
new Point(60.750, 12.696, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 7
new BezierLine(
new Point(60.750, 12.696, Point.CARTESIAN),
new Point(12.375, 13.179, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 8
new BezierLine(
new Point(12.375, 13.179, Point.CARTESIAN),
new Point(60.750, 12.536, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 9
new BezierLine(
new Point(60.750, 12.536, Point.CARTESIAN),
new Point(60.589, 9.321, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 10
new BezierLine(
new Point(60.589, 9.321, Point.CARTESIAN),
new Point(12.536, 8.357, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 11
new BezierLine(
new Point(12.536, 8.357, Point.CARTESIAN),
new Point(26.679, 8.679, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 12
new BezierLine(
new Point(26.679, 8.679, Point.CARTESIAN),
new Point(22.821, 109.446, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 13
new BezierLine(
new Point(22.821, 109.446, Point.CARTESIAN),
new Point(70.714, 109.446, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 14
new BezierLine(
new Point(70.714, 109.446, Point.CARTESIAN),
new Point(71.036, 120.214, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 15
new BezierLine(
new Point(71.036, 120.214, Point.CARTESIAN),
new Point(22.179, 120.214, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 16
new BezierLine(
new Point(22.179, 120.214, Point.CARTESIAN),
new Point(11.089, 130.821, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 17
new BezierLine(
new Point(11.089, 130.821, Point.CARTESIAN),
new Point(70.714, 112.018, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 18
new BezierLine(
new Point(70.714, 112.018, Point.CARTESIAN),
new Point(70.714, 128.250, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 19
new BezierLine(
new Point(70.714, 128.250, Point.CARTESIAN),
new Point(9.964, 130.018, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 20
new BezierLine(
new Point(9.964, 130.018, Point.CARTESIAN),
new Point(70.554, 130.500, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 21
new BezierLine(
new Point(70.554, 130.500, Point.CARTESIAN),
new Point(70.393, 135.000, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 22
new BezierLine(
new Point(70.393, 135.000, Point.CARTESIAN),
new Point(13.821, 134.839, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90)).build();
follower.followPath(path);
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
telemetryA.update();
}
/**
* This runs the OpMode, updating the Follower as well as printing out the debug statements to
* the Telemetry, as well as the FTC Dashboard.
*/
@Override
public void loop() {
follower.update();
if (follower.atParametricEnd()) {
follower.followPath(path);
}
follower.telemetryDebug(telemetryA);
}
}

View File

@ -1,4 +0,0 @@
package org.firstinspires.ftc.teamcode;
public class BluenbAutov1 {
}

View File

@ -0,0 +1,24 @@
package org.firstinspires.ftc.teamcode;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import org.firstinspires.ftc.teamcode.cometbots.CometBotAutoDevelopment;
@TeleOp(name = "CometBot Auto", group = "Development")
public class CometBotDevAuto extends OpMode {
public CometBotAutoDevelopment runMode;
@Override
public void init() {
this.runMode = new CometBotAutoDevelopment(hardwareMap, telemetry, gamepad1, gamepad2);
this.runMode.init();
}
@Override
public void loop() {
this.runMode.update();
telemetry.update();
}
}

View File

@ -12,46 +12,72 @@ public class PedroConstants {
*/
// Robot motor configurations
public static final String FRONT_LEFT_MOTOR = "Drive front lt";
public static final String BACK_LEFT_MOTOR = "Drive back lt";
public static final String FRONT_RIGHT_MOTOR = "Drive front rt";
public static final String BACK_RIGHT_MOTOR = "Drive back rt";
public static final String FRONT_LEFT_MOTOR = "front-left";
public static final String BACK_LEFT_MOTOR = "back-left";
public static final String FRONT_RIGHT_MOTOR = "front-right";
public static final String BACK_RIGHT_MOTOR = "back-right";
// Robot motor direction
public static final Direction FRONT_LEFT_MOTOR_DIRECTION = Direction.REVERSE;
public static final Direction BACK_LEFT_MOTOR_DIRECTION = Direction.REVERSE;
public static final Direction FRONT_RIGHT_MOTOR_DIRECTION = Direction.REVERSE;
public static final Direction BACK_RIGHT_MOTOR_DIRECTION = Direction.REVERSE;
public static final Direction FRONT_RIGHT_MOTOR_DIRECTION = Direction.FORWARD;
public static final Direction BACK_RIGHT_MOTOR_DIRECTION = Direction.FORWARD;
/*
Motor Max Power
*/
public static final double MAX_POWER = .75;
// Robot IMU configuration
public static final String IMU = "imu";
// Robot IMU placement
public static final RevHubOrientationOnRobot.LogoFacingDirection IMU_LOGO_FACING_DIRECTION
= RevHubOrientationOnRobot.LogoFacingDirection.LEFT;
public static final RevHubOrientationOnRobot.UsbFacingDirection IMU_USB_FACING_DIRECTION
= RevHubOrientationOnRobot.UsbFacingDirection.UP;
// Robot encoders
// NOTE: Encoders are plugged into the same ports as motors hence the weird names
public static final String RIGHT_ENCODER = "front-left"; //2
public static final String BACK_ENCODER = "front-right"; //1
public static final String LEFT_ENCODER = "back-right"; //0
// Robot encoder direction
public static final double FRONT_LEFT_MOTOR_ENCODER = Encoder.FORWARD;
public static final double BACK_LEFT_MOTOR_ENCODER = Encoder.FORWARD;
public static final double FRONT_RIGHT_MOTOR_ENCODER = Encoder.FORWARD;
public static final double BACK_RIGHT_MOTOR_ENCODER = Encoder.FORWARD;
public static final double LEFT_ENCODER_DIRECTION = Encoder.FORWARD;
public static final double RIGHT_ENCODER_DIRECTION = Encoder.REVERSE;
public static final double BACK_ENCODER_DIRECTION = Encoder.FORWARD;
// Arm config
public static final String LIFT_SLIDE_LEFT_MOTOR = "lift-slide-left";
public static final String LIFT_SLIDE_RIGHT_MOTOR = "lift-slide-right";
public static final String Claw_Servo = "ClawServo";
public static final String Wrist_Servo = "WristServo";
public static final String Arm_Servo = "ArmServo";
/*
Pedro's parameters
*/
// The weight of the robot in Kilograms
public static final double ROBOT_WEIGHT_IN_KG = 5.15;
public static final double ROBOT_WEIGHT_IN_KG = 9;
// Maximum velocity of the robot going forward
public static final double ROBOT_SPEED_FORWARD = 66.6117;
public static final double ROBOT_SPEED_FORWARD = 51.5;
// Maximum velocity of the robot going right
public static final double ROBOT_SPEED_LATERAL = 60.0671;
public static final double ROBOT_SPEED_LATERAL = 28.7;
// Rate of deceleration when power is cut-off when the robot is moving forward
public static final double FORWARD_ZERO_POWER_ACCEL = -71.154;
public static final double FORWARD_ZERO_POWER_ACCEL = -59.8;
// Rate of deceleration when power is cut-off when the robot is moving to the right
public static final double LATERAL_ZERO_POWER_ACCEL = -109.5358;
public static final double LATERAL_ZERO_POWER_ACCEL = -99.7;
// Determines how fast your robot will decelerate as a factor of how fast your robot will coast to a stop
public static final double ZERO_POWER_ACCEL_MULT = 4.0;
public static final double ZERO_POWER_ACCEL_MULT = 3.5;
/* Centripetal force correction - increase if robot is correcting into the path
- decrease if robot is correcting away from the path */
public static final double CENTRIPETAL_SCALING = 0.0005;
public static final double CENTRIPETAL_SCALING = 0.0004;
}

View File

@ -0,0 +1,122 @@
package org.firstinspires.ftc.teamcode;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
@Autonomous(name = "Pre Loaded Blue Basket Auto", group = "Competition")
public class PreLoadedBlueBasketAuto extends OpMode {
private Telemetry telemetryA;
private Follower follower;
private PathChain path;
private final Pose startPose = new Pose(7.875, 89.357);
@Override
public void init() {
follower = new Follower(hardwareMap);
follower.setMaxPower(.45);
follower.setStartingPose(startPose);
path = follower.pathBuilder()
.addPath(
// Line 1
new BezierLine(
new Point(8.036, 89.196, Point.CARTESIAN),
new Point(10.125, 126.804, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 2
new BezierCurve(
new Point(10.125, 126.804, Point.CARTESIAN),
new Point(37.607, 90.000, Point.CARTESIAN),
new Point(62.357, 119.893, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 3
new BezierCurve(
new Point(62.357, 119.893, Point.CARTESIAN),
new Point(33.750, 112.500, Point.CARTESIAN),
new Point(15.107, 130.661, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 4
new BezierCurve(
new Point(15.107, 130.661, Point.CARTESIAN),
new Point(58.821, 103.018, Point.CARTESIAN),
new Point(59.625, 126.964, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 5
new BezierLine(
new Point(59.625, 126.964, Point.CARTESIAN),
new Point(15.107, 130.339, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 6
new BezierLine(
new Point(15.107, 130.339, Point.CARTESIAN),
new Point(59.625, 126.964, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 7
new BezierLine(
new Point(59.625, 126.964, Point.CARTESIAN),
new Point(57.857, 133.071, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 8
new BezierLine(
new Point(57.857, 133.071, Point.CARTESIAN),
new Point(18.964, 134.679, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 9
new BezierCurve(
new Point(18.964, 134.679, Point.CARTESIAN),
new Point(84.536, 131.786, Point.CARTESIAN),
new Point(80.036, 96.429, Point.CARTESIAN)
)
)
.setLinearHeadingInterpolation(Math.toRadians(0), Math.toRadians(270)).build();
follower.followPath(path);
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
telemetryA.update();
}
@Override
public void loop() {
follower.update();
follower.telemetryDebug(telemetryA);
}
}

View File

@ -1,4 +1,4 @@
package org.firstinspires.ftc.teamcode;
package org.firstinspires.ftc.teamcode.cometbots;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.config.Config;
@ -9,6 +9,7 @@ import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
@ -25,15 +26,15 @@ import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
* @version 1.0, 3/12/2024
*/
@Config
@Autonomous(name = "AutoExampleSeason2025V1", group = "Autonomous Pathing Tuning")
public class AutoExampleSeason2025V1 extends OpMode {
@Autonomous(name = "BlueNonBasketAuto", group = "Autonomous Pathing Tuning")
public class BlueNonBasketAuto extends OpMode {
private Telemetry telemetryA;
private Follower follower;
private PathChain path;
private final Pose startPose = new Pose(15.0, 35, 90);
private final Pose startPose = new Pose(10.929, 55.446, 0);
/**
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
@ -43,85 +44,93 @@ public class AutoExampleSeason2025V1 extends OpMode {
public void init() {
follower = new Follower(hardwareMap);
follower.setMaxPower(.375);
follower.setMaxPower(.45);
follower.setStartingPose(startPose);
path = follower.pathBuilder()
.addPath(
// Line 1
new BezierLine(
new Point(15.000, 35.000, Point.CARTESIAN),
new Point(60.000, 35.000, Point.CARTESIAN)
new BezierCurve(
new Point(10.929, 55.446, Point.CARTESIAN),
new Point(42.429, 46.446, Point.CARTESIAN),
new Point(36.321, 38.089, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 2
new BezierLine(
new Point(60.000, 35.000, Point.CARTESIAN),
new Point(60.000, 25.000, Point.CARTESIAN)
new Point(36.321, 38.089, Point.CARTESIAN),
new Point(59.786, 36.643, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 3
new BezierLine(
new Point(60.000, 25.000, Point.CARTESIAN),
new Point(15.000, 25.000, Point.CARTESIAN)
new Point(59.786, 36.643, Point.CARTESIAN),
new Point(59.304, 24.750, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 4
new BezierLine(
new Point(15.000, 25.000, Point.CARTESIAN),
new Point(60.000, 25.000, Point.CARTESIAN)
new Point(59.304, 24.750, Point.CARTESIAN),
new Point(13.982, 23.946, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 5
new BezierLine(
new Point(60.000, 25.000, Point.CARTESIAN),
new Point(60.000, 15.000, Point.CARTESIAN)
new Point(13.982, 23.946, Point.CARTESIAN),
new Point(59.464, 24.429, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 6
new BezierLine(
new Point(60.000, 15.000, Point.CARTESIAN),
new Point(15.000, 15.000, Point.CARTESIAN)
new Point(59.464, 24.429, Point.CARTESIAN),
new Point(58.982, 15.268, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 7
new BezierLine(
new Point(15.000, 15.000, Point.CARTESIAN),
new Point(60.000, 15.000, Point.CARTESIAN)
new Point(58.982, 15.268, Point.CARTESIAN),
new Point(13.821, 14.464, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 8
new BezierLine(
new Point(60.000, 15.000, Point.CARTESIAN),
new Point(60.000, 8.000, Point.CARTESIAN)
new Point(13.821, 14.464, Point.CARTESIAN),
new Point(58.661, 13.500, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 9
new BezierLine(
new Point(60.000, 8.000, Point.CARTESIAN),
new Point(15.000, 8.000, Point.CARTESIAN)
new Point(58.661, 13.500, Point.CARTESIAN),
new Point(58.339, 8.679, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90)).build();
follower.followPath(path);
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 10
new BezierLine(
new Point(58.339, 8.679, Point.CARTESIAN),
new Point(14.625, 8.518, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0)).build();
follower.followPath(path, true);
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
telemetryA.update();
@ -135,7 +144,7 @@ public class AutoExampleSeason2025V1 extends OpMode {
public void loop() {
follower.update();
if (follower.atParametricEnd()) {
follower.followPath(path);
follower.followPath(path, true);
}
follower.telemetryDebug(telemetryA);
}

View File

@ -0,0 +1,142 @@
package org.firstinspires.ftc.teamcode.cometbots;
import static org.firstinspires.ftc.teamcode.PedroConstants.MAX_POWER;
import androidx.annotation.NonNull;
import com.acmerobotics.dashboard.telemetry.TelemetryPacket;
import com.acmerobotics.roadrunner.Action;
import com.acmerobotics.roadrunner.SequentialAction;
import com.acmerobotics.roadrunner.SleepAction;
import com.acmerobotics.roadrunner.ftc.Actions;
import com.qualcomm.robotcore.hardware.Gamepad;
import com.qualcomm.robotcore.hardware.HardwareMap;
import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.states.FieldStates;
import org.firstinspires.ftc.teamcode.subsystem.MotorsSubsystem;
public class CometBotAutoDevelopment {
/*
Subsystems
*/
private MotorsSubsystem motors;
/*
Controllers
*/
public Gamepad GP1;
public Gamepad GP2;
public Gamepad currentGP1;
public Gamepad previousGP1;
public Gamepad currentGP2;
public Gamepad previousGP2;
private Telemetry telemetry;
public FieldStates fieldStates;
private boolean centricity = false;
private Follower follower;
private HardwareMap hardwareMap;
public CometBotAutoDevelopment(HardwareMap hardwareMap, Telemetry telemetry, Gamepad gp1, Gamepad gp2) {
this.motors = new MotorsSubsystem(hardwareMap, telemetry);
this.GP1 = gp1;
this.GP2 = gp2;
this.hardwareMap = hardwareMap;
this.telemetry = telemetry;
this.currentGP1 = new Gamepad();
this.currentGP2 = new Gamepad();
this.previousGP1 = new Gamepad();
this.previousGP2 = new Gamepad();
this.fieldStates = new FieldStates();
this.follower = new Follower(hardwareMap);
}
public class ZeroOutPower implements Action {
@Override
public boolean run(@NonNull TelemetryPacket telemetryPacket) {
follower = new Follower(hardwareMap);
follower.setMaxPower(0);
System.out.println("Running ZeroOutPower");
return follower.isBusy();
}
}
public class ReturnToMaxPower implements Action {
@Override
public boolean run(@NonNull TelemetryPacket telemetryPacket) {
follower = new Follower(hardwareMap);
follower.setMaxPower(MAX_POWER);
follower.startTeleopDrive();
System.out.println("Running ReturnToMaxPower");
return follower.isBusy();
}
}
public Action zeroOutPower() {
return new ZeroOutPower();
}
public Action returnToMaxPower() {
return new ReturnToMaxPower();
}
public void init() {
this.motors.init();
this.fieldStates.setFieldLocation(FieldStates.FieldLocation.TRAVELING);
follower.setMaxPower(MAX_POWER);
follower.startTeleopDrive();
}
public void update() {
this.previousGP1.copy(currentGP1);
this.currentGP1.copy(this.GP1);
this.previousGP2.copy(currentGP2);
this.currentGP2.copy(this.GP2);
this.toFixMotorBlockingIssueFirstMethod();
this.toFixMotorBlockingIssueSecondMethod();
this.changeCentricity();
follower.setTeleOpMovementVectors(-this.GP1.left_stick_y, -this.GP1.left_stick_x, -this.GP1.right_stick_x, centricity);
follower.update();
this.telemetry.addData("Field State", this.fieldStates.getFieldLocation());
}
public void changeCentricity() {
if (this.currentGP1.left_bumper && !this.previousGP1.left_bumper) {
this.centricity = !centricity;
this.follower.breakFollowing();
this.follower.startTeleopDrive();
}
}
public void toFixMotorBlockingIssueFirstMethod() {
if (this.currentGP1.cross && !this.previousGP1.cross) {
fieldStates.setFieldLocation(FieldStates.FieldLocation.BUCKET);
Actions.runBlocking(new SequentialAction(
this.zeroOutPower(),
new SleepAction(3),
this.returnToMaxPower()
));
fieldStates.setFieldLocation(FieldStates.FieldLocation.TRAVELING);
}
}
public void toFixMotorBlockingIssueSecondMethod() {
if (this.currentGP1.circle && !this.previousGP1.circle) {
this.follower.breakFollowing();
fieldStates.setFieldLocation(FieldStates.FieldLocation.BUCKET);
Actions.runBlocking(new SequentialAction(
new SleepAction(3)
));
fieldStates.setFieldLocation(FieldStates.FieldLocation.TRAVELING);
this.follower.startTeleopDrive();
}
}
}

View File

@ -27,8 +27,10 @@
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.firstinspires.ftc.teamcode;
package org.firstinspires.ftc.teamcode.cometbots.projects;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_ENCODER_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR;
@ -37,6 +39,10 @@ import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.LEFT_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.LEFT_ENCODER_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.RIGHT_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.RIGHT_ENCODER_DIRECTION;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
@ -74,15 +80,12 @@ import org.firstinspires.ftc.teamcode.pedroPathing.localization.Encoder;
* Remove or comment out the @Disabled line to add this OpMode to the Driver Station OpMode list
*/
@TeleOp(name = "Basic: Omni Linear OpMode", group = "Linear OpMode")
@TeleOp(name="Basic: Omni Linear OpMode", group="Linear OpMode")
public class BasicOmniOpMode_Linear extends LinearOpMode {
// Declare OpMode members for each of the 4 motors.
private final ElapsedTime runtime = new ElapsedTime();
private Encoder leftFront;
private Encoder rightFront;
private Encoder leftRear;
private Encoder rightRear;
@Override
public void runOpMode() {
@ -93,12 +96,18 @@ public class BasicOmniOpMode_Linear extends LinearOpMode {
DcMotor rightFrontDrive = hardwareMap.get(DcMotor.class, FRONT_RIGHT_MOTOR);
DcMotor rightBackDrive = hardwareMap.get(DcMotor.class, BACK_RIGHT_MOTOR);
leftFront = new Encoder(hardwareMap.get(DcMotorEx.class, FRONT_LEFT_MOTOR));
leftRear = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_LEFT_MOTOR));
rightRear = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_RIGHT_MOTOR));
rightFront = new Encoder(hardwareMap.get(DcMotorEx.class, FRONT_RIGHT_MOTOR));
// TODO: replace these with your encoder ports
Encoder leftEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, LEFT_ENCODER));
Encoder rightEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, RIGHT_ENCODER));
Encoder strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_ENCODER));
// TODO: reverse any encoders necessary
leftEncoder.setDirection(LEFT_ENCODER_DIRECTION);
rightEncoder.setDirection(RIGHT_ENCODER_DIRECTION);
strafeEncoder.setDirection(BACK_ENCODER_DIRECTION);
// ########################################################################################
// !!! IMPORTANT Drive Information. Test your motor directions. !!!!!
// ########################################################################################
@ -114,20 +123,11 @@ public class BasicOmniOpMode_Linear extends LinearOpMode {
rightFrontDrive.setDirection(FRONT_RIGHT_MOTOR_DIRECTION);
rightBackDrive.setDirection(BACK_RIGHT_MOTOR_DIRECTION);
leftFrontDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
leftBackDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
rightFrontDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
rightBackDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
leftFrontDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
leftBackDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
rightFrontDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
rightBackDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
// Wait for the game to start (driver presses START)
telemetry.addData("Status", "Initialized");
telemetry.addData("Left Encoder Value", leftEncoder.getDeltaPosition());
telemetry.addData("Right Encoder Value", rightEncoder.getDeltaPosition());
telemetry.addData("Strafe Encoder Value", strafeEncoder.getDeltaPosition());
telemetry.update();
waitForStart();
@ -186,14 +186,12 @@ public class BasicOmniOpMode_Linear extends LinearOpMode {
rightBackDrive.setPower(rightBackPower);
// Show the elapsed game time and wheel power.
telemetry.addData("Status", "Run Time: " + runtime);
telemetry.addData("Status", "Run Time: " + runtime.toString());
telemetry.addData("Front left/Right", "%4.2f, %4.2f", leftFrontPower, rightFrontPower);
telemetry.addData("Back left/Right", "%4.2f, %4.2f", leftBackPower, rightBackPower);
telemetry.addData("Encoder Front Left", leftFrontDrive.getDirection() + " : " + leftFrontDrive.getCurrentPosition());
telemetry.addData("Encoder Front Right", rightFrontDrive.getCurrentPosition());
telemetry.addData("Encoder Back Left", leftBackDrive.getCurrentPosition());
telemetry.addData("Encoder Back Right", rightBackDrive.getCurrentPosition());
telemetry.addData("Left Encoder Value", leftEncoder.getDeltaPosition());
telemetry.addData("Right Encoder Value", rightEncoder.getDeltaPosition());
telemetry.addData("Strafe Encoder Value", strafeEncoder.getDeltaPosition());
telemetry.update();
}
}
}
}}

View File

@ -5,7 +5,9 @@ import com.qualcomm.robotcore.hardware.HardwareMap;
import com.qualcomm.robotcore.hardware.IMU;
import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers.DriveEncoderLocalizer;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers.ThreeWheelIMULocalizer;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers.ThreeWheelLocalizer;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers.TwoWheelLocalizer;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.MathFunctions;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Vector;
@ -67,7 +69,7 @@ public class PoseUpdater {
*/
public PoseUpdater(HardwareMap hardwareMap) {
// TODO: replace the second argument with your preferred localizer
this(hardwareMap, new DriveEncoderLocalizer(hardwareMap));
this(hardwareMap, new ThreeWheelLocalizer(hardwareMap));
}
/**

View File

@ -1,20 +1,11 @@
package org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR_ENCODER;
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.leftFrontMotorName;
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.leftRearMotorName;
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.rightFrontMotorName;
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.rightRearMotorName;
import com.acmerobotics.dashboard.config.Config;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import com.qualcomm.robotcore.hardware.HardwareMap;
@ -35,21 +26,21 @@ import org.firstinspires.ftc.teamcode.pedroPathing.util.NanoTimer;
*/
@Config
public class DriveEncoderLocalizer extends Localizer {
private final HardwareMap hardwareMap;
private HardwareMap hardwareMap;
private Pose startPose;
private Pose displacementPose;
private Pose currentVelocity;
private Matrix prevRotationMatrix;
private final NanoTimer timer;
private NanoTimer timer;
private long deltaTimeNano;
private final Encoder leftFront;
private final Encoder rightFront;
private final Encoder leftRear;
private final Encoder rightRear;
private Encoder leftFront;
private Encoder rightFront;
private Encoder leftRear;
private Encoder rightRear;
private double totalHeading;
public static double FORWARD_TICKS_TO_INCHES = -0.0058;
public static double STRAFE_TICKS_TO_INCHES = -0.0054;
public static double TURN_TICKS_TO_RADIANS = -0.0009;
public static double FORWARD_TICKS_TO_INCHES = 1;
public static double STRAFE_TICKS_TO_INCHES = 1;
public static double TURN_TICKS_TO_RADIANS = 1;
public static double ROBOT_WIDTH = 1;
public static double ROBOT_LENGTH = 1;
@ -73,26 +64,16 @@ public class DriveEncoderLocalizer extends Localizer {
public DriveEncoderLocalizer(HardwareMap map, Pose setStartPose) {
hardwareMap = map;
leftFront = new Encoder(hardwareMap.get(DcMotorEx.class, FRONT_LEFT_MOTOR));
leftRear = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_LEFT_MOTOR));
rightRear = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_RIGHT_MOTOR));
rightFront = new Encoder(hardwareMap.get(DcMotorEx.class, FRONT_RIGHT_MOTOR));
DcMotor leftFrontDrive = hardwareMap.get(DcMotor.class, FRONT_LEFT_MOTOR);
DcMotor leftBackDrive = hardwareMap.get(DcMotor.class, BACK_LEFT_MOTOR);
DcMotor rightFrontDrive = hardwareMap.get(DcMotor.class, FRONT_RIGHT_MOTOR);
DcMotor rightBackDrive = hardwareMap.get(DcMotor.class, BACK_RIGHT_MOTOR);
leftFrontDrive.setDirection(FRONT_LEFT_MOTOR_DIRECTION);
leftBackDrive.setDirection(BACK_LEFT_MOTOR_DIRECTION);
rightFrontDrive.setDirection(FRONT_RIGHT_MOTOR_DIRECTION);
rightBackDrive.setDirection(BACK_RIGHT_MOTOR_DIRECTION);
leftFront = new Encoder(hardwareMap.get(DcMotorEx.class, leftFrontMotorName));
leftRear = new Encoder(hardwareMap.get(DcMotorEx.class, leftRearMotorName));
rightRear = new Encoder(hardwareMap.get(DcMotorEx.class, rightRearMotorName));
rightFront = new Encoder(hardwareMap.get(DcMotorEx.class, rightFrontMotorName));
// TODO: reverse any encoders necessary
leftFront.setDirection(FRONT_LEFT_MOTOR_ENCODER);
rightFront.setDirection(FRONT_RIGHT_MOTOR_ENCODER);
leftRear.setDirection(BACK_LEFT_MOTOR_ENCODER);
rightRear.setDirection(BACK_RIGHT_MOTOR_ENCODER);
leftFront.setDirection(Encoder.REVERSE);
rightRear.setDirection(Encoder.REVERSE);
leftRear.setDirection(Encoder.FORWARD);
rightRear.setDirection(Encoder.FORWARD);
setStartPose(setStartPose);
timer = new NanoTimer();
@ -148,7 +129,7 @@ public class DriveEncoderLocalizer extends Localizer {
* @param heading the rotation of the Matrix
*/
public void setPrevRotationMatrix(double heading) {
prevRotationMatrix = new Matrix(3, 3);
prevRotationMatrix = new Matrix(3,3);
prevRotationMatrix.set(0, 0, Math.cos(heading));
prevRotationMatrix.set(0, 1, -Math.sin(heading));
prevRotationMatrix.set(1, 0, Math.sin(heading));
@ -183,7 +164,7 @@ public class DriveEncoderLocalizer extends Localizer {
Matrix globalDeltas;
setPrevRotationMatrix(getPose().getHeading());
Matrix transformation = new Matrix(3, 3);
Matrix transformation = new Matrix(3,3);
if (Math.abs(robotDeltas.get(2, 0)) < 0.001) {
transformation.set(0, 0, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
transformation.set(0, 1, -robotDeltas.get(2, 0) / 2.0);
@ -233,13 +214,13 @@ public class DriveEncoderLocalizer extends Localizer {
* @return returns a Matrix containing the robot relative movement.
*/
public Matrix getRobotDeltas() {
Matrix returnMatrix = new Matrix(3, 1);
Matrix returnMatrix = new Matrix(3,1);
// x/forward movement
returnMatrix.set(0, 0, FORWARD_TICKS_TO_INCHES * (leftFront.getDeltaPosition() + rightFront.getDeltaPosition() + leftRear.getDeltaPosition() + rightRear.getDeltaPosition()));
returnMatrix.set(0,0, FORWARD_TICKS_TO_INCHES * (leftFront.getDeltaPosition() + rightFront.getDeltaPosition() + leftRear.getDeltaPosition() + rightRear.getDeltaPosition()));
//y/strafe movement
returnMatrix.set(1, 0, STRAFE_TICKS_TO_INCHES * (-leftFront.getDeltaPosition() + rightFront.getDeltaPosition() + leftRear.getDeltaPosition() - rightRear.getDeltaPosition()));
returnMatrix.set(1,0, STRAFE_TICKS_TO_INCHES * (-leftFront.getDeltaPosition() + rightFront.getDeltaPosition() + leftRear.getDeltaPosition() - rightRear.getDeltaPosition()));
// theta/turning
returnMatrix.set(2, 0, TURN_TICKS_TO_RADIANS * ((-leftFront.getDeltaPosition() + rightFront.getDeltaPosition() - leftRear.getDeltaPosition() + rightRear.getDeltaPosition()) / (ROBOT_WIDTH + ROBOT_LENGTH)));
returnMatrix.set(2,0, TURN_TICKS_TO_RADIANS * ((-leftFront.getDeltaPosition() + rightFront.getDeltaPosition() - leftRear.getDeltaPosition() + rightRear.getDeltaPosition()) / (ROBOT_WIDTH + ROBOT_LENGTH)));
return returnMatrix;
}

View File

@ -0,0 +1,317 @@
package org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers;
import static org.firstinspires.ftc.teamcode.PedroConstants.*;
import com.acmerobotics.dashboard.config.Config;
import com.qualcomm.hardware.rev.RevHubOrientationOnRobot;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import com.qualcomm.robotcore.hardware.HardwareMap;
import com.qualcomm.robotcore.hardware.IMU;
import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Encoder;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Localizer;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Matrix;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.MathFunctions;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Vector;
import org.firstinspires.ftc.teamcode.pedroPathing.util.NanoTimer;
/**
* This is the ThreeWheelIMULocalizer class. This class extends the Localizer superclass and is a
* localizer that uses the three wheel odometry set up with the IMU to have more accurate heading
* readings. The diagram below, which is modified from Road Runner, shows a typical set up.
*
* The view is from the top of the robot looking downwards.
*
* left on robot is the y positive direction
*
* forward on robot is the x positive direction
*
* /--------------\
* | ____ |
* | ---- |
* | || || |
* | || || | ----> left (y positive)
* | |
* | |
* \--------------/
* |
* |
* V
* forward (x positive)
*
* @author Logan Nash
* @author Anyi Lin - 10158 Scott's Bots
* @version 1.0, 7/9/2024
*/
@Config
public class ThreeWheelIMULocalizer extends Localizer {
private HardwareMap hardwareMap;
private Pose startPose;
private Pose displacementPose;
private Pose currentVelocity;
private Matrix prevRotationMatrix;
private NanoTimer timer;
private long deltaTimeNano;
private Encoder leftEncoder;
private Encoder rightEncoder;
private Encoder strafeEncoder;
private Pose leftEncoderPose;
private Pose rightEncoderPose;
private Pose strafeEncoderPose;
public final IMU imu;
private double previousIMUOrientation;
private double deltaRadians;
private double totalHeading;
public static double FORWARD_TICKS_TO_INCHES = 0.0029;//8192 * 1.37795 * 2 * Math.PI * 0.5008239963;
public static double STRAFE_TICKS_TO_INCHES = 0.0029;//8192 * 1.37795 * 2 * Math.PI * 0.5018874659;
public static double TURN_TICKS_TO_RADIANS = 0.0022;//8192 * 1.37795 * 2 * Math.PI * 0.5;
public static boolean useIMU = true;
/**
* This creates a new ThreeWheelIMULocalizer from a HardwareMap, with a starting Pose at (0,0)
* facing 0 heading.
*
* @param map the HardwareMap
*/
public ThreeWheelIMULocalizer(HardwareMap map) {
this(map, new Pose());
}
/**
* This creates a new ThreeWheelIMULocalizer from a HardwareMap and a Pose, with the Pose
* specifying the starting pose of the localizer.
*
* @param map the HardwareMap
* @param setStartPose the Pose to start from
*/
public ThreeWheelIMULocalizer(HardwareMap map, Pose setStartPose) {
hardwareMap = map;
imu = hardwareMap.get(IMU.class, IMU);
// TODO: replace this with your IMU's orientation
imu.initialize(new IMU.Parameters(new RevHubOrientationOnRobot(IMU_LOGO_FACING_DIRECTION, IMU_USB_FACING_DIRECTION)));
// TODO: replace these with your encoder positions
leftEncoderPose = new Pose(0, 6.19375, 0);
rightEncoderPose = new Pose(0, -6.19375, 0);
strafeEncoderPose = new Pose(-7, 0, Math.toRadians(90));
// TODO: replace these with your encoder ports
leftEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, LEFT_ENCODER));
rightEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, RIGHT_ENCODER));
strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_ENCODER));
// TODO: reverse any encoders necessary
leftEncoder.setDirection(LEFT_ENCODER_DIRECTION);
rightEncoder.setDirection(RIGHT_ENCODER_DIRECTION);
strafeEncoder.setDirection(BACK_ENCODER_DIRECTION);
setStartPose(setStartPose);
timer = new NanoTimer();
deltaTimeNano = 1;
displacementPose = new Pose();
currentVelocity = new Pose();
totalHeading = 0;
resetEncoders();
}
/**
* This returns the current pose estimate.
*
* @return returns the current pose estimate as a Pose
*/
@Override
public Pose getPose() {
return MathFunctions.addPoses(startPose, displacementPose);
}
/**
* This returns the current velocity estimate.
*
* @return returns the current velocity estimate as a Pose
*/
@Override
public Pose getVelocity() {
return currentVelocity.copy();
}
/**
* This returns the current velocity estimate.
*
* @return returns the current velocity estimate as a Vector
*/
@Override
public Vector getVelocityVector() {
return currentVelocity.getVector();
}
/**
* This sets the start pose. Changing the start pose should move the robot as if all its
* previous movements were displacing it from its new start pose.
*
* @param setStart the new start pose
*/
@Override
public void setStartPose(Pose setStart) {
startPose = setStart;
}
/**
* This sets the Matrix that contains the previous pose's heading rotation.
*
* @param heading the rotation of the Matrix
*/
public void setPrevRotationMatrix(double heading) {
prevRotationMatrix = new Matrix(3,3);
prevRotationMatrix.set(0, 0, Math.cos(heading));
prevRotationMatrix.set(0, 1, -Math.sin(heading));
prevRotationMatrix.set(1, 0, Math.sin(heading));
prevRotationMatrix.set(1, 1, Math.cos(heading));
prevRotationMatrix.set(2, 2, 1.0);
}
/**
* This sets the current pose estimate. Changing this should just change the robot's current
* pose estimate, not anything to do with the start pose.
*
* @param setPose the new current pose estimate
*/
@Override
public void setPose(Pose setPose) {
displacementPose = MathFunctions.subtractPoses(setPose, startPose);
resetEncoders();
}
/**
* This updates the elapsed time timer that keeps track of time between updates, as well as the
* change position of the Encoders. Then, the robot's global change in position is calculated
* using the pose exponential method.
*/
@Override
public void update() {
deltaTimeNano = timer.getElapsedTime();
timer.resetTimer();
updateEncoders();
Matrix robotDeltas = getRobotDeltas();
Matrix globalDeltas;
setPrevRotationMatrix(getPose().getHeading());
Matrix transformation = new Matrix(3,3);
if (Math.abs(robotDeltas.get(2, 0)) < 0.001) {
transformation.set(0, 0, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
transformation.set(0, 1, -robotDeltas.get(2, 0) / 2.0);
transformation.set(1, 0, robotDeltas.get(2, 0) / 2.0);
transformation.set(1, 1, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
transformation.set(2, 2, 1.0);
} else {
transformation.set(0, 0, Math.sin(robotDeltas.get(2, 0)) / robotDeltas.get(2, 0));
transformation.set(0, 1, (Math.cos(robotDeltas.get(2, 0)) - 1.0) / robotDeltas.get(2, 0));
transformation.set(1, 0, (1.0 - Math.cos(robotDeltas.get(2, 0))) / robotDeltas.get(2, 0));
transformation.set(1, 1, Math.sin(robotDeltas.get(2, 0)) / robotDeltas.get(2, 0));
transformation.set(2, 2, 1.0);
}
globalDeltas = Matrix.multiply(Matrix.multiply(prevRotationMatrix, transformation), robotDeltas);
displacementPose.add(new Pose(globalDeltas.get(0, 0), globalDeltas.get(1, 0), globalDeltas.get(2, 0)));
currentVelocity = new Pose(globalDeltas.get(0, 0) / (deltaTimeNano * Math.pow(10.0, 9)), globalDeltas.get(1, 0) / (deltaTimeNano * Math.pow(10.0, 9)), globalDeltas.get(2, 0) / (deltaTimeNano * Math.pow(10.0, 9)));
totalHeading += globalDeltas.get(2, 0);
}
/**
* This updates the Encoders.
*/
public void updateEncoders() {
leftEncoder.update();
rightEncoder.update();
strafeEncoder.update();
double currentIMUOrientation = MathFunctions.normalizeAngle(imu.getRobotYawPitchRollAngles().getYaw(AngleUnit.RADIANS));
deltaRadians = MathFunctions.getTurnDirection(previousIMUOrientation, currentIMUOrientation) * MathFunctions.getSmallestAngleDifference(currentIMUOrientation, previousIMUOrientation);
previousIMUOrientation = currentIMUOrientation;
}
/**
* This resets the Encoders.
*/
public void resetEncoders() {
leftEncoder.reset();
rightEncoder.reset();
strafeEncoder.reset();
}
/**
* This calculates the change in position from the perspective of the robot using information
* from the Encoders.
*
* @return returns a Matrix containing the robot relative movement.
*/
public Matrix getRobotDeltas() {
Matrix returnMatrix = new Matrix(3,1);
// x/forward movement
returnMatrix.set(0,0, FORWARD_TICKS_TO_INCHES * ((rightEncoder.getDeltaPosition() * leftEncoderPose.getY() - leftEncoder.getDeltaPosition() * rightEncoderPose.getY()) / (leftEncoderPose.getY() - rightEncoderPose.getY())));
//y/strafe movement
returnMatrix.set(1,0, STRAFE_TICKS_TO_INCHES * (strafeEncoder.getDeltaPosition() - strafeEncoderPose.getX() * ((rightEncoder.getDeltaPosition() - leftEncoder.getDeltaPosition()) / (leftEncoderPose.getY() - rightEncoderPose.getY()))));
// theta/turning
if (MathFunctions.getSmallestAngleDifference(0, deltaRadians) > 0.00005 && useIMU) {
returnMatrix.set(2, 0, deltaRadians);
} else {
returnMatrix.set(2,0, TURN_TICKS_TO_RADIANS * ((rightEncoder.getDeltaPosition() - leftEncoder.getDeltaPosition()) / (leftEncoderPose.getY() - rightEncoderPose.getY())));
}
return returnMatrix;
}
/**
* This returns how far the robot has turned in radians, in a number not clamped between 0 and
* 2 * pi radians. This is used for some tuning things and nothing actually within the following.
*
* @return returns how far the robot has turned in total, in radians.
*/
public double getTotalHeading() {
return totalHeading;
}
/**
* This returns the multiplier applied to forward movement measurement to convert from encoder
* ticks to inches. This is found empirically through a tuner.
*
* @return returns the forward ticks to inches multiplier
*/
public double getForwardMultiplier() {
return FORWARD_TICKS_TO_INCHES;
}
/**
* This returns the multiplier applied to lateral/strafe movement measurement to convert from
* encoder ticks to inches. This is found empirically through a tuner.
*
* @return returns the lateral/strafe ticks to inches multiplier
*/
public double getLateralMultiplier() {
return STRAFE_TICKS_TO_INCHES;
}
/**
* This returns the multiplier applied to turning movement measurement to convert from encoder
* ticks to radians. This is found empirically through a tuner.
*
* @return returns the turning ticks to radians multiplier
*/
public double getTurningMultiplier() {
return TURN_TICKS_TO_RADIANS;
}
/**
* This resets the IMU.
*/
public void resetIMU() {
imu.resetYaw();
}
}

View File

@ -0,0 +1,294 @@
package org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers;
import static org.firstinspires.ftc.teamcode.PedroConstants.*;
import com.acmerobotics.dashboard.config.Config;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import com.qualcomm.robotcore.hardware.HardwareMap;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Encoder;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Localizer;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Matrix;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.MathFunctions;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Vector;
import org.firstinspires.ftc.teamcode.pedroPathing.util.NanoTimer;
/**
* This is the ThreeWheelLocalizer class. This class extends the Localizer superclass and is a
* localizer that uses the three wheel odometry set up. The diagram below, which is modified from
* Road Runner, shows a typical set up.
*
* The view is from the top of the robot looking downwards.
*
* left on robot is the y positive direction
*
* forward on robot is the x positive direction
*
* /--------------\
* | ____ |
* | ---- |
* | || || |
* | || || | ----> left (y positive)
* | |
* | |
* \--------------/
* |
* |
* V
* forward (x positive)
*
* @author Anyi Lin - 10158 Scott's Bots
* @version 1.0, 4/2/2024
*/
@Config
public class ThreeWheelLocalizer extends Localizer {
private HardwareMap hardwareMap;
private Pose startPose;
private Pose displacementPose;
private Pose currentVelocity;
private Matrix prevRotationMatrix;
private NanoTimer timer;
private long deltaTimeNano;
private Encoder leftEncoder;
private Encoder rightEncoder;
private Encoder strafeEncoder;
private Pose leftEncoderPose;
private Pose rightEncoderPose;
private Pose strafeEncoderPose;
private double totalHeading;
public static double FORWARD_TICKS_TO_INCHES = 0.0029;//8192 * 1.37795 * 2 * Math.PI * 0.5008239963;
public static double STRAFE_TICKS_TO_INCHES = 0.0029;//8192 * 1.37795 * 2 * Math.PI * 0.5018874659;
public static double TURN_TICKS_TO_RADIANS = 0.003;//8192 * 1.37795 * 2 * Math.PI * 0.5;
/**
* This creates a new ThreeWheelLocalizer from a HardwareMap, with a starting Pose at (0,0)
* facing 0 heading.
*
* @param map the HardwareMap
*/
public ThreeWheelLocalizer(HardwareMap map) {
this(map, new Pose());
}
/**
* This creates a new ThreeWheelLocalizer from a HardwareMap and a Pose, with the Pose
* specifying the starting pose of the localizer.
*
* @param map the HardwareMap
* @param setStartPose the Pose to start from
*/
public ThreeWheelLocalizer(HardwareMap map, Pose setStartPose) {
// TODO: replace these with your encoder positions
leftEncoderPose = new Pose(0, 6.25, 0);
rightEncoderPose = new Pose(0, -6.25, 0);
strafeEncoderPose = new Pose(-7, 0, Math.toRadians(90));
hardwareMap = map;
// TODO: replace these with your encoder ports
leftEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, LEFT_ENCODER));
rightEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, RIGHT_ENCODER));
strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_ENCODER));
// TODO: reverse any encoders necessary
leftEncoder.setDirection(LEFT_ENCODER_DIRECTION);
rightEncoder.setDirection(RIGHT_ENCODER_DIRECTION);
strafeEncoder.setDirection(BACK_ENCODER_DIRECTION);
setStartPose(setStartPose);
timer = new NanoTimer();
deltaTimeNano = 1;
displacementPose = new Pose();
currentVelocity = new Pose();
totalHeading = 0;
resetEncoders();
}
/**
* This returns the current pose estimate.
*
* @return returns the current pose estimate as a Pose
*/
@Override
public Pose getPose() {
return MathFunctions.addPoses(startPose, displacementPose);
}
/**
* This returns the current velocity estimate.
*
* @return returns the current velocity estimate as a Pose
*/
@Override
public Pose getVelocity() {
return currentVelocity.copy();
}
/**
* This returns the current velocity estimate.
*
* @return returns the current velocity estimate as a Vector
*/
@Override
public Vector getVelocityVector() {
return currentVelocity.getVector();
}
/**
* This sets the start pose. Changing the start pose should move the robot as if all its
* previous movements were displacing it from its new start pose.
*
* @param setStart the new start pose
*/
@Override
public void setStartPose(Pose setStart) {
startPose = setStart;
}
/**
* This sets the Matrix that contains the previous pose's heading rotation.
*
* @param heading the rotation of the Matrix
*/
public void setPrevRotationMatrix(double heading) {
prevRotationMatrix = new Matrix(3,3);
prevRotationMatrix.set(0, 0, Math.cos(heading));
prevRotationMatrix.set(0, 1, -Math.sin(heading));
prevRotationMatrix.set(1, 0, Math.sin(heading));
prevRotationMatrix.set(1, 1, Math.cos(heading));
prevRotationMatrix.set(2, 2, 1.0);
}
/**
* This sets the current pose estimate. Changing this should just change the robot's current
* pose estimate, not anything to do with the start pose.
*
* @param setPose the new current pose estimate
*/
@Override
public void setPose(Pose setPose) {
displacementPose = MathFunctions.subtractPoses(setPose, startPose);
resetEncoders();
}
/**
* This updates the elapsed time timer that keeps track of time between updates, as well as the
* change position of the Encoders. Then, the robot's global change in position is calculated
* using the pose exponential method.
*/
@Override
public void update() {
deltaTimeNano = timer.getElapsedTime();
timer.resetTimer();
updateEncoders();
Matrix robotDeltas = getRobotDeltas();
Matrix globalDeltas;
setPrevRotationMatrix(getPose().getHeading());
Matrix transformation = new Matrix(3,3);
if (Math.abs(robotDeltas.get(2, 0)) < 0.001) {
transformation.set(0, 0, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
transformation.set(0, 1, -robotDeltas.get(2, 0) / 2.0);
transformation.set(1, 0, robotDeltas.get(2, 0) / 2.0);
transformation.set(1, 1, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
transformation.set(2, 2, 1.0);
} else {
transformation.set(0, 0, Math.sin(robotDeltas.get(2, 0)) / robotDeltas.get(2, 0));
transformation.set(0, 1, (Math.cos(robotDeltas.get(2, 0)) - 1.0) / robotDeltas.get(2, 0));
transformation.set(1, 0, (1.0 - Math.cos(robotDeltas.get(2, 0))) / robotDeltas.get(2, 0));
transformation.set(1, 1, Math.sin(robotDeltas.get(2, 0)) / robotDeltas.get(2, 0));
transformation.set(2, 2, 1.0);
}
globalDeltas = Matrix.multiply(Matrix.multiply(prevRotationMatrix, transformation), robotDeltas);
displacementPose.add(new Pose(globalDeltas.get(0, 0), globalDeltas.get(1, 0), globalDeltas.get(2, 0)));
currentVelocity = new Pose(globalDeltas.get(0, 0) / (deltaTimeNano * Math.pow(10.0, 9)), globalDeltas.get(1, 0) / (deltaTimeNano * Math.pow(10.0, 9)), globalDeltas.get(2, 0) / (deltaTimeNano * Math.pow(10.0, 9)));
totalHeading += globalDeltas.get(2, 0);
}
/**
* This updates the Encoders.
*/
public void updateEncoders() {
leftEncoder.update();
rightEncoder.update();
strafeEncoder.update();
}
/**
* This resets the Encoders.
*/
public void resetEncoders() {
leftEncoder.reset();
rightEncoder.reset();
strafeEncoder.reset();
}
/**
* This calculates the change in position from the perspective of the robot using information
* from the Encoders.
*
* @return returns a Matrix containing the robot relative movement.
*/
public Matrix getRobotDeltas() {
Matrix returnMatrix = new Matrix(3,1);
// x/forward movement
returnMatrix.set(0,0, FORWARD_TICKS_TO_INCHES * ((rightEncoder.getDeltaPosition() * leftEncoderPose.getY() - leftEncoder.getDeltaPosition() * rightEncoderPose.getY()) / (leftEncoderPose.getY() - rightEncoderPose.getY())));
//y/strafe movement
returnMatrix.set(1,0, STRAFE_TICKS_TO_INCHES * (strafeEncoder.getDeltaPosition() - strafeEncoderPose.getX() * ((rightEncoder.getDeltaPosition() - leftEncoder.getDeltaPosition()) / (leftEncoderPose.getY() - rightEncoderPose.getY()))));
// theta/turning
returnMatrix.set(2,0, TURN_TICKS_TO_RADIANS * ((rightEncoder.getDeltaPosition() - leftEncoder.getDeltaPosition()) / (leftEncoderPose.getY() - rightEncoderPose.getY())));
return returnMatrix;
}
/**
* This returns how far the robot has turned in radians, in a number not clamped between 0 and
* 2 * pi radians. This is used for some tuning things and nothing actually within the following.
*
* @return returns how far the robot has turned in total, in radians.
*/
public double getTotalHeading() {
return totalHeading;
}
/**
* This returns the multiplier applied to forward movement measurement to convert from encoder
* ticks to inches. This is found empirically through a tuner.
*
* @return returns the forward ticks to inches multiplier
*/
public double getForwardMultiplier() {
return FORWARD_TICKS_TO_INCHES;
}
/**
* This returns the multiplier applied to lateral/strafe movement measurement to convert from
* encoder ticks to inches. This is found empirically through a tuner.
*
* @return returns the lateral/strafe ticks to inches multiplier
*/
public double getLateralMultiplier() {
return STRAFE_TICKS_TO_INCHES;
}
/**
* This returns the multiplier applied to turning movement measurement to convert from encoder
* ticks to radians. This is found empirically through a tuner.
*
* @return returns the turning ticks to radians multiplier
*/
public double getTurningMultiplier() {
return TURN_TICKS_TO_RADIANS;
}
/**
* This does nothing since this localizer does not use the IMU.
*/
public void resetIMU() {
}
}

View File

@ -0,0 +1,302 @@
package org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.LEFT_ENCODER;
import com.acmerobotics.dashboard.config.Config;
import com.qualcomm.hardware.rev.RevHubOrientationOnRobot;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import com.qualcomm.robotcore.hardware.HardwareMap;
import com.qualcomm.robotcore.hardware.IMU;
import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Encoder;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Localizer;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Matrix;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.MathFunctions;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Vector;
import org.firstinspires.ftc.teamcode.pedroPathing.util.NanoTimer;
/**
* This is the TwoWheelLocalizer class. This class extends the Localizer superclass and is a
* localizer that uses the two wheel odometry with IMU set up. The diagram below, which is modified from
* Road Runner, shows a typical set up.
*
* The view is from the top of the robot looking downwards.
*
* left on robot is the y positive direction
*
* forward on robot is the x positive direction
*
* /--------------\
* | ____ |
* | ---- |
* | || || |
* | || || | ----> left (y positive)
* | |
* | |
* \--------------/
* |
* |
* V
* forward (x positive)
*
* @author Anyi Lin - 10158 Scott's Bots
* @version 1.0, 4/2/2024
*/
@Config
public class TwoWheelLocalizer extends Localizer { // todo: make two wheel odo work
private HardwareMap hardwareMap;
private IMU imu;
private Pose startPose;
private Pose displacementPose;
private Pose currentVelocity;
private Matrix prevRotationMatrix;
private NanoTimer timer;
private long deltaTimeNano;
private Encoder forwardEncoder;
private Encoder strafeEncoder;
private Pose forwardEncoderPose;
private Pose strafeEncoderPose;
private double previousIMUOrientation;
private double deltaRadians;
private double totalHeading;
public static double FORWARD_TICKS_TO_INCHES = 8192 * 1.37795 * 2 * Math.PI * 0.5008239963;
public static double STRAFE_TICKS_TO_INCHES = 8192 * 1.37795 * 2 * Math.PI * 0.5018874659;
/**
* This creates a new TwoWheelLocalizer from a HardwareMap, with a starting Pose at (0,0)
* facing 0 heading.
*
* @param map the HardwareMap
*/
public TwoWheelLocalizer(HardwareMap map) {
this(map, new Pose());
}
/**
* This creates a new TwoWheelLocalizer from a HardwareMap and a Pose, with the Pose
* specifying the starting pose of the localizer.
*
* @param map the HardwareMap
* @param setStartPose the Pose to start from
*/
public TwoWheelLocalizer(HardwareMap map, Pose setStartPose) {
// TODO: replace these with your encoder positions
forwardEncoderPose = new Pose(-18.5/25.4 - 0.1, 164.4/25.4, 0);
strafeEncoderPose = new Pose(-107.9/25.4+0.25, -1.1/25.4-0.23, Math.toRadians(90));
hardwareMap = map;
imu = hardwareMap.get(IMU.class, "imu");
// TODO: replace this with your IMU's orientation
imu.initialize(new IMU.Parameters(new RevHubOrientationOnRobot(RevHubOrientationOnRobot.LogoFacingDirection.UP, RevHubOrientationOnRobot.UsbFacingDirection.LEFT)));
// TODO: replace these with your encoder ports
forwardEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, LEFT_ENCODER));
strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_ENCODER));
// TODO: reverse any encoders necessary
forwardEncoder.setDirection(Encoder.REVERSE);
strafeEncoder.setDirection(Encoder.FORWARD);
setStartPose(setStartPose);
timer = new NanoTimer();
deltaTimeNano = 1;
displacementPose = new Pose();
currentVelocity = new Pose();
previousIMUOrientation = MathFunctions.normalizeAngle(imu.getRobotYawPitchRollAngles().getYaw(AngleUnit.RADIANS));
deltaRadians = 0;
}
/**
* This returns the current pose estimate.
*
* @return returns the current pose estimate as a Pose
*/
@Override
public Pose getPose() {
return MathFunctions.addPoses(startPose, displacementPose);
}
/**
* This returns the current velocity estimate.
*
* @return returns the current velocity estimate as a Pose
*/
@Override
public Pose getVelocity() {
return currentVelocity.copy();
}
/**
* This returns the current velocity estimate.
*
* @return returns the current velocity estimate as a Vector
*/
@Override
public Vector getVelocityVector() {
return currentVelocity.getVector();
}
/**
* This sets the start pose. Changing the start pose should move the robot as if all its
* previous movements were displacing it from its new start pose.
*
* @param setStart the new start pose
*/
@Override
public void setStartPose(Pose setStart) {
startPose = setStart;
}
/**
* This sets the Matrix that contains the previous pose's heading rotation.
*
* @param heading the rotation of the Matrix
*/
public void setPrevRotationMatrix(double heading) {
prevRotationMatrix = new Matrix(3,3);
prevRotationMatrix.set(0, 0, Math.cos(heading));
prevRotationMatrix.set(0, 1, -Math.sin(heading));
prevRotationMatrix.set(1, 0, Math.sin(heading));
prevRotationMatrix.set(1, 1, Math.cos(heading));
prevRotationMatrix.set(2, 2, 1.0);
}
/**
* This sets the current pose estimate. Changing this should just change the robot's current
* pose estimate, not anything to do with the start pose.
*
* @param setPose the new current pose estimate
*/
@Override
public void setPose(Pose setPose) {
displacementPose = MathFunctions.subtractPoses(setPose, startPose);
resetEncoders();
}
/**
* This updates the elapsed time timer that keeps track of time between updates, as well as the
* change position of the Encoders and the IMU readings. Then, the robot's global change in
* position is calculated using the pose exponential method.
*/
@Override
public void update() {
deltaTimeNano = timer.getElapsedTime();
timer.resetTimer();
updateEncoders();
Matrix robotDeltas = getRobotDeltas();
Matrix globalDeltas;
setPrevRotationMatrix(getPose().getHeading());
Matrix transformation = new Matrix(3,3);
if (Math.abs(robotDeltas.get(2, 0)) < 0.001) {
transformation.set(0, 0, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
transformation.set(0, 1, -robotDeltas.get(2, 0) / 2.0);
transformation.set(1, 0, robotDeltas.get(2, 0) / 2.0);
transformation.set(1, 1, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
transformation.set(2, 2, 1.0);
} else {
transformation.set(0, 0, Math.sin(robotDeltas.get(2, 0)) / robotDeltas.get(2, 0));
transformation.set(0, 1, (Math.cos(robotDeltas.get(2, 0)) - 1.0) / robotDeltas.get(2, 0));
transformation.set(1, 0, (1.0 - Math.cos(robotDeltas.get(2, 0))) / robotDeltas.get(2, 0));
transformation.set(1, 1, Math.sin(robotDeltas.get(2, 0)) / robotDeltas.get(2, 0));
transformation.set(2, 2, 1.0);
}
globalDeltas = Matrix.multiply(Matrix.multiply(prevRotationMatrix, transformation), robotDeltas);
displacementPose.add(new Pose(globalDeltas.get(0, 0), globalDeltas.get(1, 0), globalDeltas.get(2, 0)));
currentVelocity = new Pose(globalDeltas.get(0, 0) / (deltaTimeNano * Math.pow(10.0, 9)), globalDeltas.get(1, 0) / (deltaTimeNano * Math.pow(10.0, 9)), globalDeltas.get(2, 0) / (deltaTimeNano * Math.pow(10.0, 9)));
totalHeading += globalDeltas.get(2, 0);
}
/**
* This updates the Encoders as well as the IMU.
*/
public void updateEncoders() {
forwardEncoder.update();
strafeEncoder.update();
double currentIMUOrientation = MathFunctions.normalizeAngle(imu.getRobotYawPitchRollAngles().getYaw(AngleUnit.RADIANS));
deltaRadians = MathFunctions.getTurnDirection(previousIMUOrientation, currentIMUOrientation) * MathFunctions.getSmallestAngleDifference(currentIMUOrientation, previousIMUOrientation);
previousIMUOrientation = currentIMUOrientation;
}
/**
* This resets the Encoders.
*/
public void resetEncoders() {
forwardEncoder.reset();
strafeEncoder.reset();
}
/**
* This calculates the change in position from the perspective of the robot using information
* from the Encoders and IMU.
*
* @return returns a Matrix containing the robot relative movement.
*/
public Matrix getRobotDeltas() {
Matrix returnMatrix = new Matrix(3,1);
// x/forward movement
returnMatrix.set(0,0, FORWARD_TICKS_TO_INCHES * (forwardEncoder.getDeltaPosition() - forwardEncoderPose.getY() * deltaRadians));
//y/strafe movement
returnMatrix.set(1,0, STRAFE_TICKS_TO_INCHES * (strafeEncoder.getDeltaPosition() - strafeEncoderPose.getX() * deltaRadians));
// theta/turning
returnMatrix.set(2,0, deltaRadians);
return returnMatrix;
}
/**
* This returns how far the robot has turned in radians, in a number not clamped between 0 and
* 2 * pi radians. This is used for some tuning things and nothing actually within the following.
*
* @return returns how far the robot has turned in total, in radians.
*/
public double getTotalHeading() {
return totalHeading;
}
/**
* This returns the multiplier applied to forward movement measurement to convert from encoder
* ticks to inches. This is found empirically through a tuner.
*
* @return returns the forward ticks to inches multiplier
*/
public double getForwardMultiplier() {
return FORWARD_TICKS_TO_INCHES;
}
/**
* This returns the multiplier applied to lateral/strafe movement measurement to convert from
* encoder ticks to inches. This is found empirically through a tuner.
*
* @return returns the lateral/strafe ticks to inches multiplier
*/
public double getLateralMultiplier() {
return STRAFE_TICKS_TO_INCHES;
}
/**
* This returns the multiplier applied to turning movement measurement to convert from encoder
* ticks to radians. This is found empirically through a tuner.
*
* @return returns the turning ticks to radians multiplier
*/
public double getTurningMultiplier() {
return 1;
}
/**
* This resets the IMU.
*/
public void resetIMU() {
imu.resetYaw();
}
}

View File

@ -63,7 +63,6 @@ public class LateralTuner extends OpMode {
telemetryA.addData("distance moved", poseUpdater.getPose().getY());
telemetryA.addLine("The multiplier will display what your strafe ticks to inches should be to scale your current distance to " + DISTANCE + " inches.");
telemetryA.addData("multiplier", DISTANCE / (poseUpdater.getPose().getY() / poseUpdater.getLocalizer().getLateralMultiplier()));
telemetryA.update();
Drawing.drawPoseHistory(dashboardPoseTracker, "#4CAF50");

View File

@ -1,5 +1,9 @@
package org.firstinspires.ftc.teamcode.pedroPathing.localization.tuning;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.leftFrontMotorName;
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.leftRearMotorName;
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.rightFrontMotorName;
@ -58,6 +62,11 @@ public class LocalizationTest extends OpMode {
rightRear = hardwareMap.get(DcMotorEx.class, rightRearMotorName);
rightFront = hardwareMap.get(DcMotorEx.class, rightFrontMotorName);
leftFront.setDirection(FRONT_LEFT_MOTOR_DIRECTION);
leftRear.setDirection(BACK_LEFT_MOTOR_DIRECTION);
rightFront.setDirection(FRONT_RIGHT_MOTOR_DIRECTION);
rightRear.setDirection(BACK_RIGHT_MOTOR_DIRECTION);
motors = Arrays.asList(leftFront, leftRear, rightFront, rightRear);
for (DcMotorEx motor : motors) {

View File

@ -42,7 +42,7 @@ public class FollowerConstants {
public static CustomPIDFCoefficients translationalPIDFCoefficients = new CustomPIDFCoefficients(
0.1,
0,
0,
0.01,
0);
// Translational Integral
@ -53,14 +53,14 @@ public class FollowerConstants {
0);
// Feed forward constant added on to the translational PIDF
public static double translationalPIDFFeedForward = 0.015;
public static double translationalPIDFFeedForward = 0.00;
// Heading error PIDF coefficients
public static CustomPIDFCoefficients headingPIDFCoefficients = new CustomPIDFCoefficients(
1,
0,
2,
0,
0.025,
0);
// Feed forward constant added on to the heading PIDF
@ -69,10 +69,10 @@ public class FollowerConstants {
// Drive PIDF coefficients
public static CustomFilteredPIDFCoefficients drivePIDFCoefficients = new CustomFilteredPIDFCoefficients(
0.025,
0.006,
0,
0.00001,
0.6,
0.8,
0);
// Feed forward constant added on to the drive PIDF
@ -81,7 +81,7 @@ public class FollowerConstants {
// Kalman filter parameters for the drive error Kalman filter
public static KalmanFilterParameters driveKalmanFilterParameters = new KalmanFilterParameters(
6,
1);
3);
// Mass of robot in kilograms
@ -202,9 +202,9 @@ public class FollowerConstants {
// Secondary drive PIDF coefficients
public static CustomFilteredPIDFCoefficients secondaryDrivePIDFCoefficients = new CustomFilteredPIDFCoefficients(
0.00315,
0.02,
0,
0.0001,
0.000005,
0.6,
0);

View File

@ -93,11 +93,13 @@ public class ForwardVelocityTuner extends OpMode {
}
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
telemetryA.addLine("The robot will run at 1 power until it reaches " + DISTANCE + " inches forward.");
telemetryA.addLine("Make sure you have enough room, since the robot has inertia after cutting power.");
telemetryA.addLine("After running the distance, the robot will cut power from the drivetrain and display the forward velocity.");
telemetryA.addLine("Press CROSS or A on game pad 1 to stop.");
telemetryA.update();
// telemetryA.addLine("The robot will run at 1 power until it reaches " + DISTANCE + " inches forward.");
// telemetryA.addLine("Make sure you have enough room, since the robot has inertia after cutting power.");
// telemetryA.addLine("After running the distance, the robot will cut power from the drivetrain and display the forward velocity.");
// telemetryA.addLine("Press CROSS or A on game pad 1 to stop.");
//
//
// telemetryA.update();
}
@ -138,6 +140,13 @@ public class ForwardVelocityTuner extends OpMode {
velocities.add(currentVelocity);
velocities.remove(0);
}
telemetryA.addData("x", poseUpdater.getPose().getX());
telemetryA.addData("y", poseUpdater.getPose().getY());
telemetryA.addData("heading", poseUpdater.getPose().getHeading());
telemetryA.addData("velo mag", poseUpdater.getVelocity().getMagnitude());
telemetryA.addData("velo ", poseUpdater.getVelocity().getTheta());
telemetryA.update();
} else {
double average = 0;
for (Double velocity : velocities) {
@ -146,7 +155,12 @@ public class ForwardVelocityTuner extends OpMode {
average /= (double) velocities.size();
telemetryA.addData("forward velocity:", average);
telemetryA.update();
// telemetryA.addData("x", poseUpdater.getPose().getX());
// telemetryA.addData("y", poseUpdater.getPose().getY());
// telemetryA.addData("heading", poseUpdater.getPose().getHeading());
// telemetryA.addData("velo mag", poseUpdater.getVelocity().getMagnitude());
// telemetryA.addData("velo ", poseUpdater.getVelocity().getTheta());
// telemetryA.update();
}
}
}

View File

@ -119,13 +119,6 @@ public class LateralZeroPowerAccelerationTuner extends OpMode {
*/
@Override
public void loop() {
telemetry.addData("x",poseUpdater.getPose().getX());
telemetry.addData("y",poseUpdater.getPose().getY());
telemetry.addData("heading",poseUpdater.getPose().getHeading());
telemetry.addData("velo mag", poseUpdater.getVelocity().getMagnitude());
telemetry.addData("velo theta", poseUpdater.getVelocity().getTheta());
if (gamepad1.cross || gamepad1.a) {
requestOpModeStop();
}

View File

@ -0,0 +1,18 @@
package org.firstinspires.ftc.teamcode.states;
public class FieldStates {
public enum FieldLocation {
BUCKET, SUBMARINE, FLOATING, TRAVELING
}
private FieldLocation fieldLocation;
public FieldLocation getFieldLocation() {
return fieldLocation;
}
public void setFieldLocation(FieldLocation fieldLocation) {
this.fieldLocation = fieldLocation;
}
}

View File

@ -0,0 +1,72 @@
package org.firstinspires.ftc.teamcode.subsystem;
import static org.firstinspires.ftc.teamcode.PedroConstants.LIFT_SLIDE_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.LIFT_SLIDE_RIGHT_MOTOR;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.config.Config;
import com.acmerobotics.dashboard.telemetry.TelemetryPacket;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import com.qualcomm.robotcore.util.ElapsedTime;
@Config
@Autonomous(name = "Lift Motor Subsystem - PID Test")
public class LiftMotorSubsystem extends LinearOpMode {
private DcMotorEx liftSlideLeft;
private DcMotorEx liftSlideRight;
public static double kp = 0.0015, ki = 0, kd = 0;
private double lastError = 0;
private double integralSum = 0;
public static int targetPosition = 0;
private final FtcDashboard dashboard = FtcDashboard.getInstance();
private ElapsedTime timer = new ElapsedTime();
@Override
public void runOpMode() throws InterruptedException {
TelemetryPacket packet = new TelemetryPacket();
dashboard.setTelemetryTransmissionInterval(25);
liftSlideLeft = hardwareMap.get(DcMotorEx.class, LIFT_SLIDE_LEFT_MOTOR);
liftSlideRight = hardwareMap.get(DcMotorEx.class, LIFT_SLIDE_RIGHT_MOTOR);
liftSlideLeft.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
liftSlideLeft.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
liftSlideLeft.setMode(DcMotor.RunMode.RUN_WITHOUT_ENCODER);
liftSlideRight.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
liftSlideRight.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
liftSlideRight.setMode(DcMotor.RunMode.RUN_WITHOUT_ENCODER);
waitForStart();
while(opModeIsActive()) {
double power = calculatePower(targetPosition, liftSlideLeft.getCurrentPosition());
packet.put("Power", power);
packet.put("Position", liftSlideLeft.getCurrentPosition());
packet.put("Error", lastError);
packet.put("Seconds", timer.seconds());
liftSlideLeft.setPower(power);
liftSlideRight.setPower(power);
dashboard.sendTelemetryPacket(packet);
}
}
private double calculatePower(int targetPosition, int currentPosition) {
// reference is targetPosition, state is currentPosition
double error = targetPosition - currentPosition;
integralSum += error * timer.seconds();
double derivative = (error - lastError) / timer.seconds();
lastError = error;
timer.reset();
return (error * kp) + (derivative * kd) + (integralSum * ki);
}
}

View File

@ -0,0 +1,105 @@
package org.firstinspires.ftc.teamcode.subsystem;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.MAX_POWER;
import androidx.annotation.NonNull;
import com.acmerobotics.dashboard.telemetry.TelemetryPacket;
import com.acmerobotics.roadrunner.Action;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.Gamepad;
import com.qualcomm.robotcore.hardware.HardwareMap;
import org.firstinspires.ftc.robotcore.external.Telemetry;
public class MotorsSubsystem {
public HardwareMap hardwareMap;
public Telemetry telemetry;
public DcMotor frontLeftMotor;
public DcMotor backLeftMotor;
public DcMotor frontRightMotor;
public DcMotor backRightMotor;
public enum TravelState {
STOPPED, MOVING
}
public TravelState travelState;
public double power;
public MotorsSubsystem(HardwareMap hardwareMap, Telemetry telemetry) {
this.hardwareMap = hardwareMap;
this.telemetry = telemetry;
this.power = MAX_POWER;
}
public MotorsSubsystem(HardwareMap hardwareMap, Telemetry telemetry, double power) {
this.hardwareMap = hardwareMap;
this.telemetry = telemetry;
this.power = power;
}
public void init() {
frontLeftMotor = hardwareMap.get(DcMotor.class, FRONT_LEFT_MOTOR);
backLeftMotor = hardwareMap.get(DcMotor.class, BACK_LEFT_MOTOR);
frontRightMotor = hardwareMap.get(DcMotor.class, FRONT_RIGHT_MOTOR);
backRightMotor = hardwareMap.get(DcMotor.class, BACK_RIGHT_MOTOR);
frontLeftMotor.setDirection(FRONT_LEFT_MOTOR_DIRECTION);
backLeftMotor.setDirection(BACK_LEFT_MOTOR_DIRECTION);
frontRightMotor.setDirection(FRONT_RIGHT_MOTOR_DIRECTION);
backRightMotor.setDirection(BACK_RIGHT_MOTOR_DIRECTION);
frontLeftMotor.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
backLeftMotor.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
frontRightMotor.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
backRightMotor.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
this.setState(TravelState.STOPPED);
}
public void setFrontLeftMotorPower(double power) {
frontLeftMotor.setPower(power);
}
public void setBackLeftMotorPower(double power) {
backLeftMotor.setPower(power);
}
public void setFrontRightMotorPower(double power) {
frontRightMotor.setPower(power);
}
public void setBackRightMotorPower(double power) {
backRightMotor.setPower(power);
}
public void setState(TravelState travelState) {
this.travelState = travelState;
}
public TravelState getState() {
return this.travelState;
}
public void setPower(DcMotor motor, double power) {
motor.setPower(power);
if (power < 0.05) {
this.setState(TravelState.MOVING);
} else {
this.setState(TravelState.STOPPED);
}
}
}

View File

@ -16,6 +16,9 @@ dependencies {
implementation 'org.firstinspires.ftc:Vision:10.1.0'
implementation 'androidx.appcompat:appcompat:1.2.0'
implementation 'com.acmerobotics.dashboard:dashboard:0.4.5'
implementation "com.acmerobotics.roadrunner:ftc:0.1.14"
implementation "com.acmerobotics.roadrunner:core:1.0.0"
implementation "com.acmerobotics.roadrunner:actions:1.0.0"
implementation "com.acmerobotics.dashboard:dashboard:0.4.16"
}