Silver Branch Code

This commit is contained in:
robotics1
2024-11-03 09:13:37 -08:00
parent 7d83b9c254
commit c5be3cd932
8 changed files with 52 additions and 248 deletions

View File

@ -1,210 +0,0 @@
/* Copyright (c) 2021 FIRST. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided that
* the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.firstinspires.ftc.teamcode;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_ENCODER_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.LEFT_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.LEFT_ENCODER_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.RIGHT_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.RIGHT_ENCODER_DIRECTION;
import org.firstinspires.ftc.teamcode.PedroConstants.*;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Encoder;
import com.qualcomm.robotcore.eventloop.opmode.Disabled;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import com.qualcomm.robotcore.util.ElapsedTime;
/*
* This file contains an example of a Linear "OpMode".
* An OpMode is a 'program' that runs in either the autonomous or the teleop period of an FTC match.
* The names of OpModes appear on the menu of the FTC Driver Station.
* When a selection is made from the menu, the corresponding OpMode is executed.
*
* This particular OpMode illustrates driving a 4-motor Omni-Directional (or Holonomic) robot.
* This code will work with either a Mecanum-Drive or an X-Drive train.
* Both of these drives are illustrated at https://gm0.org/en/latest/docs/robot-design/drivetrains/holonomic.html
* Note that a Mecanum drive must display an X roller-pattern when viewed from above.
*
* Also note that it is critical to set the correct rotation direction for each motor. See details below.
*
* Holonomic drives provide the ability for the robot to move in three axes (directions) simultaneously.
* Each motion axis is controlled by one Joystick axis.
*
* 1) Axial: Driving forward and backward Left-joystick Forward/Backward
* 2) Lateral: Strafing right and left Left-joystick Right and Left
* 3) Yaw: Rotating Clockwise and counter clockwise Right-joystick Right and Left
*
* This code is written assuming that the right-side motors need to be reversed for the robot to drive forward.
* When you first test your robot, if it moves backward when you push the left stick forward, then you must flip
* the direction of all 4 motors (see code below).
*
* Use Android Studio to Copy this Class, and Paste it into your team's code folder with a new name.
* Remove or comment out the @Disabled line to add this OpMode to the Driver Station OpMode list
*/
@TeleOp(name="Basic: Omni Linear OpMode", group="Linear OpMode")
public class BasicOmniOpMode_Linear extends LinearOpMode {
// Declare OpMode members for each of the 4 motors.
private ElapsedTime runtime = new ElapsedTime();
private DcMotor leftFrontDrive = null;
private DcMotor leftBackDrive = null;
private DcMotor rightFrontDrive = null;
private DcMotor rightBackDrive = null;
private Encoder leftEncoder;
private Encoder rightEncoder;
private Encoder strafeEncoder;
@Override
public void runOpMode() {
// Initialize the hardware variables. Note that the strings used here must correspond
// to the names assigned during the robot configuration step on the DS or RC devices.
leftFrontDrive = hardwareMap.get(DcMotor.class, FRONT_LEFT_MOTOR);
leftBackDrive = hardwareMap.get(DcMotor.class, BACK_LEFT_MOTOR);
rightFrontDrive = hardwareMap.get(DcMotor.class, FRONT_RIGHT_MOTOR);
rightBackDrive = hardwareMap.get(DcMotor.class, BACK_RIGHT_MOTOR);
// ########################################################################################
// !!! IMPORTANT Drive Information. Test your motor directions. !!!!!
// ########################################################################################
// Most robots need the motors on one side to be reversed to drive forward.
// The motor reversals shown here are for a "direct drive" robot (the wheels turn the same direction as the motor shaft)
// If your robot has additional gear reductions or uses a right-angled drive, it's important to ensure
// that your motors are turning in the correct direction. So, start out with the reversals here, BUT
// when you first test your robot, push the left joystick forward and observe the direction the wheels turn.
// Reverse the direction (flip FORWARD <-> REVERSE ) of any wheel that runs backward
// Keep testing until ALL the wheels move the robot forward when you push the left joystick forward.
leftFrontDrive.setDirection(FRONT_LEFT_MOTOR_DIRECTION);
leftBackDrive.setDirection(BACK_LEFT_MOTOR_DIRECTION);
rightFrontDrive.setDirection(FRONT_RIGHT_MOTOR_DIRECTION);
rightBackDrive.setDirection(BACK_RIGHT_MOTOR_DIRECTION);
// TODO: replace these with your encoder ports
leftEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, LEFT_ENCODER));
rightEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, RIGHT_ENCODER));
strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_ENCODER));
// TODO: reverse any encoders necessary
leftEncoder.setDirection(LEFT_ENCODER_DIRECTION);
rightEncoder.setDirection(RIGHT_ENCODER_DIRECTION);
strafeEncoder.setDirection(BACK_ENCODER_DIRECTION);
leftEncoder.reset();
rightEncoder.reset();
strafeEncoder.reset();
// Wait for the game to start (driver presses START)
telemetry.addData("Status", "Initialized");
telemetry.update();
waitForStart();
runtime.reset();
// run until the end of the match (driver presses STOP)
while (opModeIsActive()) {
double max;
// POV Mode uses left joystick to go forward & strafe, and right joystick to rotate.
double axial = -gamepad1.left_stick_y; // Note: pushing stick forward gives negative value
double lateral = gamepad1.left_stick_x;
double yaw = gamepad1.right_stick_x;
// Combine the joystick requests for each axis-motion to determine each wheel's power.
// Set up a variable for each drive wheel to save the power level for telemetry.
double leftFrontPower = axial + lateral + yaw;
double rightFrontPower = axial - lateral - yaw;
double leftBackPower = axial - lateral + yaw;
double rightBackPower = axial + lateral - yaw;
// Normalize the values so no wheel power exceeds 100%
// This ensures that the robot maintains the desired motion.
max = Math.max(Math.abs(leftFrontPower), Math.abs(rightFrontPower));
max = Math.max(max, Math.abs(leftBackPower));
max = Math.max(max, Math.abs(rightBackPower));
if (max > 1.0) {
leftFrontPower /= max;
rightFrontPower /= max;
leftBackPower /= max;
rightBackPower /= max;
}
// This is test code:
//
// Uncomment the following code to test your motor directions.
// Each button should make the corresponding motor run FORWARD.
// 1) First get all the motors to take to correct positions on the robot
// by adjusting your Robot Configuration if necessary.
// 2) Then make sure they run in the correct direction by modifying the
// the setDirection() calls above.
// Once the correct motors move in the correct direction re-comment this code.
// leftFrontPower = gamepad1.x ? 1.0 : 0.0; // X gamepad
// leftBackPower = gamepad1.a ? 1.0 : 0.0; // A gamepad
// rightFrontPower = gamepad1.y ? 1.0 : 0.0; // Y gamepad
// rightBackPower = gamepad1.b ? 1.0 : 0.0; // B gamepad
// Send calculated power to wheels
leftFrontDrive.setPower(leftFrontPower);
rightFrontDrive.setPower(rightFrontPower);
leftBackDrive.setPower(leftBackPower);
rightBackDrive.setPower(rightBackPower);
leftEncoder.update();
rightEncoder.update();
strafeEncoder.update();
// Show the elapsed game time and wheel power.
telemetry.addData("Status", "Run Time: " + runtime.toString());
telemetry.addData("Front left/Right", "%4.2f, %4.2f", leftFrontPower, rightFrontPower);
telemetry.addData("Back left/Right", "%4.2f, %4.2f", leftBackPower, rightBackPower);
telemetry.addData("Encoder Left", leftEncoder.getDeltaPosition());
telemetry.addData("Encoder Right", rightEncoder.getDeltaPosition());
telemetry.addData("Encoder Back (Right is +)", strafeEncoder.getDeltaPosition());
telemetry.update();
}
}}

View File

@ -40,7 +40,7 @@ public class PedroConstants {
// Robot encoder direction
public static final double LEFT_ENCODER_DIRECTION = Encoder.FORWARD;
public static final double RIGHT_ENCODER_DIRECTION = Encoder.FORWARD;
public static final double BACK_ENCODER_DIRECTION = Encoder.REVERSE;
public static final double BACK_ENCODER_DIRECTION = Encoder.FORWARD;
// Arm config
public static final String SLIDE_MOTOR = "SlideMotor";
@ -53,24 +53,24 @@ public class PedroConstants {
*/
// The weight of the robot in Kilograms
public static final double ROBOT_WEIGHT_IN_KG = 10.5;
public static final double ROBOT_WEIGHT_IN_KG = 9;
// Maximum velocity of the robot going forward
public static final double ROBOT_SPEED_FORWARD = 79.0257;
public static final double ROBOT_SPEED_FORWARD = 51.5;
// Maximum velocity of the robot going right
public static final double ROBOT_SPEED_LATERAL = 12.3941;
public static final double ROBOT_SPEED_LATERAL = 28.7;
// Rate of deceleration when power is cut-off when the robot is moving forward
public static final double FORWARD_ZERO_POWER_ACCEL = -50.7945;
public static final double FORWARD_ZERO_POWER_ACCEL = -59.8;
// Rate of deceleration when power is cut-off when the robot is moving to the right
public static final double LATERAL_ZERO_POWER_ACCEL = -92.733;
public static final double LATERAL_ZERO_POWER_ACCEL = -99.7;
// Determines how fast your robot will decelerate as a factor of how fast your robot will coast to a stop
public static final double ZERO_POWER_ACCEL_MULT = 2.5;
public static final double ZERO_POWER_ACCEL_MULT = 3.5;
/* Centripetal force correction - increase if robot is correcting into the path
- decrease if robot is correcting away from the path */
public static final double CENTRIPETAL_SCALING = 0.0005;
public static final double CENTRIPETAL_SCALING = 0.0004;
}

View File

@ -35,7 +35,7 @@ public class BlueBasketAuto extends OpMode {
private PathChain path;
private final Pose startPose = new Pose(11.25, 95.75);
private final Pose startPose = new Pose(11.25, 95.75, 0);
/**
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
@ -140,7 +140,7 @@ public class BlueBasketAuto extends OpMode {
)
)
.setLinearHeadingInterpolation(Math.toRadians(0), Math.toRadians(270)).build();
follower.followPath(path);
follower.followPath(path, true);
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
telemetryA.update();
@ -154,7 +154,7 @@ public class BlueBasketAuto extends OpMode {
public void loop() {
follower.update();
if (follower.atParametricEnd()) {
follower.followPath(path);
follower.followPath(path, true);
}
follower.telemetryDebug(telemetryA);
}

View File

@ -69,7 +69,7 @@ public class PoseUpdater {
*/
public PoseUpdater(HardwareMap hardwareMap) {
// TODO: replace the second argument with your preferred localizer
this(hardwareMap, new ThreeWheelIMULocalizer(hardwareMap));
this(hardwareMap, new ThreeWheelLocalizer(hardwareMap));
}
/**

View File

@ -65,9 +65,9 @@ public class ThreeWheelIMULocalizer extends Localizer {
private double previousIMUOrientation;
private double deltaRadians;
private double totalHeading;
public static double FORWARD_TICKS_TO_INCHES = 0.004;//8192 * 1.37795 * 2 * Math.PI * 0.5008239963;
public static double STRAFE_TICKS_TO_INCHES = -0.0036;//8192 * 1.37795 * 2 * Math.PI * 0.5018874659;
public static double TURN_TICKS_TO_RADIANS = 0.0043;//8192 * 1.37795 * 2 * Math.PI * 0.5;
public static double FORWARD_TICKS_TO_INCHES = 0.0029;//8192 * 1.37795 * 2 * Math.PI * 0.5008239963;
public static double STRAFE_TICKS_TO_INCHES = 0.0029;//8192 * 1.37795 * 2 * Math.PI * 0.5018874659;
public static double TURN_TICKS_TO_RADIANS = 0.0022;//8192 * 1.37795 * 2 * Math.PI * 0.5;
public static boolean useIMU = true;
@ -96,9 +96,9 @@ public class ThreeWheelIMULocalizer extends Localizer {
imu.initialize(new IMU.Parameters(new RevHubOrientationOnRobot(IMU_LOGO_FACING_DIRECTION, IMU_USB_FACING_DIRECTION)));
// TODO: replace these with your encoder positions
leftEncoderPose = new Pose(-7.625, 6.19375, 0);
rightEncoderPose = new Pose(-7.625, -6.19375, 0);
strafeEncoderPose = new Pose(7, 1, Math.toRadians(90));
leftEncoderPose = new Pose(0, 6.19375, 0);
rightEncoderPose = new Pose(0, -6.19375, 0);
strafeEncoderPose = new Pose(-7, 0, Math.toRadians(90));
// TODO: replace these with your encoder ports
leftEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, LEFT_ENCODER));

View File

@ -57,9 +57,9 @@ public class ThreeWheelLocalizer extends Localizer {
private Pose rightEncoderPose;
private Pose strafeEncoderPose;
private double totalHeading;
public static double FORWARD_TICKS_TO_INCHES = 0.00052189;//8192 * 1.37795 * 2 * Math.PI * 0.5008239963;
public static double STRAFE_TICKS_TO_INCHES = 0.00052189;//8192 * 1.37795 * 2 * Math.PI * 0.5018874659;
public static double TURN_TICKS_TO_RADIANS = 0.00053717;//8192 * 1.37795 * 2 * Math.PI * 0.5;
public static double FORWARD_TICKS_TO_INCHES = 0.0029;//8192 * 1.37795 * 2 * Math.PI * 0.5008239963;
public static double STRAFE_TICKS_TO_INCHES = 0.0029;//8192 * 1.37795 * 2 * Math.PI * 0.5018874659;
public static double TURN_TICKS_TO_RADIANS = 0.003;//8192 * 1.37795 * 2 * Math.PI * 0.5;
/**
* This creates a new ThreeWheelLocalizer from a HardwareMap, with a starting Pose at (0,0)
@ -80,9 +80,9 @@ public class ThreeWheelLocalizer extends Localizer {
*/
public ThreeWheelLocalizer(HardwareMap map, Pose setStartPose) {
// TODO: replace these with your encoder positions
leftEncoderPose = new Pose(-18.5/25.4 - 0.1, 164.4/25.4, 0);
rightEncoderPose = new Pose(-18.4/25.4 - 0.1, -159.6/25.4, 0);
strafeEncoderPose = new Pose(0*(-107.9/25.4+8)+-107.9/25.4+0.25, -1.1/25.4-0.23, Math.toRadians(90));
leftEncoderPose = new Pose(0, 6.19375, 0);
rightEncoderPose = new Pose(0, -6.19375, 0);
strafeEncoderPose = new Pose(-7, 0, Math.toRadians(90));
hardwareMap = map;

View File

@ -40,9 +40,9 @@ public class FollowerConstants {
// Translational PIDF coefficients (don't use integral)
public static CustomPIDFCoefficients translationalPIDFCoefficients = new CustomPIDFCoefficients(
0.05,
0,
0.1,
0,
0.01,
0);
// Translational Integral
@ -58,9 +58,9 @@ public class FollowerConstants {
// Heading error PIDF coefficients
public static CustomPIDFCoefficients headingPIDFCoefficients = new CustomPIDFCoefficients(
1,
2,
0,
0.1,
0.025,
0);
// Feed forward constant added on to the heading PIDF
@ -69,10 +69,10 @@ public class FollowerConstants {
// Drive PIDF coefficients
public static CustomFilteredPIDFCoefficients drivePIDFCoefficients = new CustomFilteredPIDFCoefficients(
0.00475,
0.006,
0,
0.00004125,
0.0,
0.00001,
0.8,
0);
// Feed forward constant added on to the drive PIDF
@ -81,7 +81,7 @@ public class FollowerConstants {
// Kalman filter parameters for the drive error Kalman filter
public static KalmanFilterParameters driveKalmanFilterParameters = new KalmanFilterParameters(
6,
1);
3);
// Mass of robot in kilograms

View File

@ -93,11 +93,13 @@ public class ForwardVelocityTuner extends OpMode {
}
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
telemetryA.addLine("The robot will run at 1 power until it reaches " + DISTANCE + " inches forward.");
telemetryA.addLine("Make sure you have enough room, since the robot has inertia after cutting power.");
telemetryA.addLine("After running the distance, the robot will cut power from the drivetrain and display the forward velocity.");
telemetryA.addLine("Press CROSS or A on game pad 1 to stop.");
telemetryA.update();
// telemetryA.addLine("The robot will run at 1 power until it reaches " + DISTANCE + " inches forward.");
// telemetryA.addLine("Make sure you have enough room, since the robot has inertia after cutting power.");
// telemetryA.addLine("After running the distance, the robot will cut power from the drivetrain and display the forward velocity.");
// telemetryA.addLine("Press CROSS or A on game pad 1 to stop.");
//
//
// telemetryA.update();
}
@ -138,6 +140,13 @@ public class ForwardVelocityTuner extends OpMode {
velocities.add(currentVelocity);
velocities.remove(0);
}
telemetryA.addData("x", poseUpdater.getPose().getX());
telemetryA.addData("y", poseUpdater.getPose().getY());
telemetryA.addData("heading", poseUpdater.getPose().getHeading());
telemetryA.addData("velo mag", poseUpdater.getVelocity().getMagnitude());
telemetryA.addData("velo ", poseUpdater.getVelocity().getTheta());
telemetryA.update();
} else {
double average = 0;
for (Double velocity : velocities) {
@ -146,7 +155,12 @@ public class ForwardVelocityTuner extends OpMode {
average /= (double) velocities.size();
telemetryA.addData("forward velocity:", average);
telemetryA.update();
// telemetryA.addData("x", poseUpdater.getPose().getX());
// telemetryA.addData("y", poseUpdater.getPose().getY());
// telemetryA.addData("heading", poseUpdater.getPose().getHeading());
// telemetryA.addData("velo mag", poseUpdater.getVelocity().getMagnitude());
// telemetryA.addData("velo ", poseUpdater.getVelocity().getTheta());
// telemetryA.update();
}
}
}