Compare commits
12 Commits
0d131c1b1e
...
84aba36915
Author | SHA1 | Date | |
---|---|---|---|
84aba36915 | |||
13eebf51b8 | |||
93edbbf45f | |||
76ca6437ed | |||
96345a151c | |||
c71019e090 | |||
6943172487 | |||
aecb6122b3 | |||
c5bc5df6a3 | |||
76eac94686 | |||
e6e8a657d7 | |||
a260b373de |
30
HARDWARE.md
30
HARDWARE.md
@ -10,22 +10,22 @@ There are two robots: 14493-DS, and FTC-992M.
|
||||
|
||||
Below are the following configurations for our robots
|
||||
|
||||
| physical port | hub | robot part | robot part location | robot software config name |
|
||||
|---------------|-----------|-----------------------------|-------------------------------|----------------------------|
|
||||
| motor0 | control | UltraPlanetary HD hex motor | right front leg frame | Drive front rt |
|
||||
| motor1 | control | UltraPlanetary HD hex motor | right back leg frame | Drive back rt |
|
||||
| motor2 | control | UltraPlanetary HD hex motor | left front leg frame | Drive front lt |
|
||||
| motor3 | control | UltraPlanetary HD hex motor | left back leg frame | Drive back lt |
|
||||
| I2C B0 | control | Color sensor V3 | Left outside leg frame | color left |
|
||||
| I2C B1 | control | Color sensor V3 | Right outside leg frame | color right |
|
||||
| I2C B0 | expansion | 2m distance sensor | Middle Back outside leg frame | distance |
|
||||
| motor0 | expansion | UltraPlanetary HD hex motor | left back arm frame | arm raise |
|
||||
| motor1 | expansion | Core Hex Motor | right back arm frame | hang |
|
||||
| motor3 | expansion | Digital device | arm frame back right | axle encoder |
|
||||
| Servo 0 | expansion | Servo | on arm | wrist |
|
||||
| Servo 1 | expansion | Servo | on arm | gripper |
|
||||
| physical port | hub | robot part | robot part location | robot software config name |
|
||||
|---------------|-----------|------------------------------|-------------------------------|----------------------------|
|
||||
| motor0 | control | UltraPlanetary HD hex motor | right front leg frame | Drive front rt |
|
||||
| motor1 | control | UltraPlanetary HD hex motor | right back leg frame | Drive back rt |
|
||||
| motor2 | control | UltraPlanetary HD hex motor | left front leg frame | Drive front lt |
|
||||
| motor3 | control | UltraPlanetary HD hex motor | left back leg frame | Drive back lt |
|
||||
| I2C B0 | control | Color sensor V3 | Left outside leg frame | color left |
|
||||
| I2C B1 | control | Color sensor V3 | Right outside leg frame | color right |
|
||||
| I2C B0 | expansion | 2m distance sensor | Middle Back outside leg frame | distance |
|
||||
| motor0 | expansion | UltraPlanetary HD hex motor | left back arm frame | arm raise |
|
||||
| motor1 | expansion | Core Hex Motor | right back arm frame | hang |
|
||||
| motor3 | expansion | UltraPlanetary HD hex motor* | arm frame back right | axle encoder |
|
||||
| Servo 0 | expansion | Servo | on arm | wrist |
|
||||
| Servo 1 | expansion | Servo | on arm | gripper |
|
||||
|
||||
|
||||
** * **: The device plugged into motor3 is actually a Digital Device encoder but behaves like a UltraPlanetary HD hex motor encoder.
|
||||
|
||||
|
||||
|
||||
|
4
NOTES.md
Normal file
4
NOTES.md
Normal file
@ -0,0 +1,4 @@
|
||||
- Refactor of code
|
||||
- Possibly establish patterns
|
||||
- Also, establish github for students as an element of a professional portfolio (laura)
|
||||
-
|
@ -63,7 +63,7 @@ import com.qualcomm.robotcore.util.ElapsedTime;
|
||||
* Remove or comment out the @Disabled line to add this opmode to the Driver Station OpMode list
|
||||
*/
|
||||
|
||||
@TeleOp(name="Basic: Omni Linear OpMode", group="Linear Opmode")
|
||||
@TeleOp(name=" CR file", group="Linear Opmode")
|
||||
@Disabled
|
||||
public class BasicOmniOpMode_Linear extends LinearOpMode {
|
||||
|
||||
|
@ -200,7 +200,6 @@ public class Blue extends LinearOpMode {
|
||||
arm = hardwareMap.get(DcMotor.class, "arm raise");
|
||||
wrist = hardwareMap.get(Servo.class, "wrist");
|
||||
distance = hardwareMap.get(DistanceSensor.class, "distance");
|
||||
wrist.setPosition(1);
|
||||
sleep(1000);
|
||||
// To drive forward, most robots need the motor on one side to be reversed, because the axles point in opposite directions.
|
||||
// When run, this OpMode should start both motors driving forward. So adjust these two lines based on your first test drive.
|
||||
@ -257,7 +256,7 @@ public class Blue extends LinearOpMode {
|
||||
turnLeft(90);
|
||||
straightLeft(2);
|
||||
driveForward(6.5);
|
||||
raisearm(80);
|
||||
raisearm(45);
|
||||
arm.setPower(0);
|
||||
driveForward(-8);
|
||||
terminateOpModeNow();
|
||||
@ -285,24 +284,6 @@ public class Blue extends LinearOpMode {
|
||||
raisearm(80);
|
||||
arm.setPower(0);
|
||||
driveForward(-8);
|
||||
straightRight(11.5);
|
||||
driveForward(-15);
|
||||
turnLeft(90);
|
||||
straightLeft(15);
|
||||
driveForward(8);
|
||||
driveForward(-26);
|
||||
straightRight(29);
|
||||
driveForward(-1.5);
|
||||
raisearm(80);
|
||||
wrist.setPosition(0);
|
||||
raisearm(100);
|
||||
gripper.setPosition(0);
|
||||
sleep(500);
|
||||
driveForward(5);
|
||||
raisearm(-270);
|
||||
raisearm(50);
|
||||
wrist.setPosition(1);
|
||||
driveForward(-5);
|
||||
terminateOpModeNow();
|
||||
|
||||
|
||||
|
@ -31,9 +31,7 @@ package org.firstinspires.ftc.teamcode;
|
||||
|
||||
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
|
||||
import com.qualcomm.robotcore.hardware.ColorSensor;
|
||||
import com.qualcomm.robotcore.hardware.DcMotor;
|
||||
import com.qualcomm.robotcore.hardware.DcMotorSimple;
|
||||
import com.qualcomm.robotcore.hardware.DistanceSensor;
|
||||
import com.qualcomm.robotcore.hardware.Servo;
|
||||
import com.qualcomm.robotcore.util.ElapsedTime;
|
||||
@ -68,7 +66,7 @@ import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;
|
||||
|
||||
@Autonomous(name="Blue (Backstage)", group="Robot")
|
||||
//@Disabled
|
||||
public class bluefront extends LinearOpMode {
|
||||
public class BlueBackStage extends LinearOpMode {
|
||||
|
||||
/* Declare OpMode members. */
|
||||
private DcMotor leftDrive = null;
|
||||
@ -196,7 +194,6 @@ public class bluefront extends LinearOpMode {
|
||||
gripper = hardwareMap.get(Servo.class, "gripper");
|
||||
arm = hardwareMap.get(DcMotor.class, "arm raise");
|
||||
wrist = hardwareMap.get(Servo.class, "wrist");
|
||||
wrist.setPosition(1);
|
||||
sleep(1000);
|
||||
// To drive forward, most robots need the motor on one side to be reversed, because the axles point in opposite directions.
|
||||
// When run, this OpMode should start both motors driving forward. So adjust these two lines based on your first test drive.
|
||||
@ -235,7 +232,7 @@ public class bluefront extends LinearOpMode {
|
||||
sleep(3000);
|
||||
}
|
||||
public void executeAuto()
|
||||
{
|
||||
{
|
||||
arm.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
|
||||
driveForward(26);
|
||||
sleep(500);
|
||||
@ -245,25 +242,21 @@ public class bluefront extends LinearOpMode {
|
||||
{
|
||||
telemetry.addData("position", "left");
|
||||
telemetry.update();
|
||||
straightLeft(12);
|
||||
straightLeft(13.5);
|
||||
raisearm(80);
|
||||
arm.setPower(0);
|
||||
driveForward(-15.5);
|
||||
turnRight(90);
|
||||
straightRight(15);
|
||||
driveForward(8);
|
||||
driveForward(-28.5);
|
||||
driveForward(-19);
|
||||
straightLeft(19);
|
||||
driveForward(-1.5);
|
||||
raisearm(80);
|
||||
wrist.setPosition(0);
|
||||
raisearm(100);
|
||||
gripper.setPosition(0);
|
||||
gripper.setPosition(0.3);
|
||||
sleep(500);
|
||||
driveForward(5);
|
||||
raisearm(-270);
|
||||
raisearm(50);
|
||||
wrist.setPosition(1);
|
||||
driveForward(-5);
|
||||
terminateOpModeNow();
|
||||
|
||||
|
||||
@ -274,26 +267,19 @@ public class bluefront extends LinearOpMode {
|
||||
{
|
||||
telemetry.addData("position","right");
|
||||
telemetry.update();
|
||||
turnRight(90);
|
||||
turnRight(88);
|
||||
straightLeft(2);
|
||||
driveForward(6.5);
|
||||
driveForward(5.25);
|
||||
raisearm(80);
|
||||
arm.setPower(0);
|
||||
driveForward(-21);
|
||||
straightRight(32);
|
||||
driveForward(18);
|
||||
driveForward(-28);
|
||||
straightLeft(33);
|
||||
driveForward(-38);
|
||||
straightLeft(5.5);
|
||||
raisearm(80);
|
||||
wrist.setPosition(0);
|
||||
raisearm(100);
|
||||
gripper.setPosition(0);
|
||||
gripper.setPosition(0.35);
|
||||
sleep(500);
|
||||
driveForward(5);
|
||||
raisearm(-270);
|
||||
raisearm(50);
|
||||
wrist.setPosition(1);
|
||||
driveForward(-5);
|
||||
driveForward(7.5);
|
||||
terminateOpModeNow();
|
||||
|
||||
|
||||
@ -309,19 +295,15 @@ public class bluefront extends LinearOpMode {
|
||||
driveForward(-15);
|
||||
turnRight(90);
|
||||
straightRight(15);
|
||||
driveForward(8);
|
||||
driveForward(-26);
|
||||
driveForward(-18);
|
||||
straightLeft(29);
|
||||
driveForward(-1.5);
|
||||
raisearm(80);
|
||||
wrist.setPosition(0);
|
||||
raisearm(100);
|
||||
gripper.setPosition(0);
|
||||
gripper.setPosition(0.3);
|
||||
sleep(500);
|
||||
driveForward(5);
|
||||
raisearm(-270);
|
||||
raisearm(50);
|
||||
wrist.setPosition(1);
|
||||
driveForward(-5);
|
||||
terminateOpModeNow();
|
||||
|
||||
|
@ -196,7 +196,6 @@ public class Red extends LinearOpMode {
|
||||
gripper = hardwareMap.get(Servo.class, "gripper");
|
||||
arm = hardwareMap.get(DcMotor.class, "arm raise");
|
||||
wrist = hardwareMap.get(Servo.class, "wrist");
|
||||
wrist.setPosition(1);
|
||||
sleep(1000);
|
||||
// To drive forward, most robots need the motor on one side to be reversed, because the axles point in opposite directions.
|
||||
// When run, this OpMode should start both motors driving forward. So adjust these two lines based on your first test drive.
|
||||
@ -262,7 +261,7 @@ public class Red extends LinearOpMode {
|
||||
turnRight(90);
|
||||
straightLeft(2);
|
||||
driveForward(6.5);
|
||||
raisearm(80);
|
||||
raisearm(45);
|
||||
arm.setPower(0);
|
||||
driveForward(-10);
|
||||
terminateOpModeNow();
|
||||
|
@ -0,0 +1,456 @@
|
||||
/* Copyright (c) 2017 FIRST. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification,
|
||||
* are permitted (subject to the limitations in the disclaimer below) provided that
|
||||
* the following conditions are met:
|
||||
*
|
||||
* Redistributions of source code must retain the above copyright notice, this list
|
||||
* of conditions and the following disclaimer.
|
||||
*
|
||||
* Redistributions in binary form must reproduce the above copyright notice, this
|
||||
* list of conditions and the following disclaimer in the documentation and/or
|
||||
* other materials provided with the distribution.
|
||||
*
|
||||
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
|
||||
* promote products derived from this software without specific prior written permission.
|
||||
*
|
||||
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
|
||||
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
||||
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
package org.firstinspires.ftc.teamcode;
|
||||
|
||||
import android.annotation.SuppressLint;
|
||||
|
||||
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
|
||||
import com.qualcomm.robotcore.hardware.DcMotor;
|
||||
import com.qualcomm.robotcore.hardware.DistanceSensor;
|
||||
import com.qualcomm.robotcore.hardware.Servo;
|
||||
import com.qualcomm.robotcore.util.ElapsedTime;
|
||||
|
||||
import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;
|
||||
|
||||
/**
|
||||
* This file illustrates the concept of driving a path based on encoder counts.
|
||||
* The code is structured as a LinearOpMode
|
||||
*
|
||||
* The code REQUIRES that you DO have encoders on the wheels,
|
||||
* otherwise you would use: RobotAutoDriveByTime;
|
||||
*
|
||||
* This code ALSO requires that the drive Motors have been configured such that a positive
|
||||
* power command moves them forward, and causes the encoders to count UP.
|
||||
*
|
||||
* The desired path in this example is:
|
||||
* - Drive forward for 48 inches
|
||||
* - Spin right for 12 Inches
|
||||
* - Drive Backward for 24 inches
|
||||
* - Stop and close the claw.
|
||||
*
|
||||
* The code is written using a method called: encoderDrive(speed, leftInches, rightInches, timeoutS)
|
||||
* that performs the actual movement.
|
||||
* This method assumes that each movement is relative to the last stopping place.
|
||||
* There are other ways to perform encoder based moves, but this method is probably the simplest.
|
||||
* This code uses the RUN_TO_POSITION mode to enable the Motor controllers to generate the run profile
|
||||
*
|
||||
* Use Android Studio to Copy this Class, and Paste it into your team's code folder with a new name.
|
||||
* Remove or comment out the @Disabled line to add this opmode to the Driver Station OpMode list
|
||||
*/
|
||||
|
||||
@Autonomous(name="red (backstage)", group="Robot")
|
||||
//@Disabled
|
||||
public class RedBackStage extends LinearOpMode {
|
||||
|
||||
/* Declare OpMode members. */
|
||||
private DcMotor leftDrive = null;
|
||||
private DcMotor rightDrive = null;
|
||||
private DcMotor backrightDrive = null;
|
||||
private DcMotor backleftDrive = null;
|
||||
private DistanceSensor distanceRight = null;
|
||||
private DistanceSensor distanceLeft = null;
|
||||
private Servo wrist = null;
|
||||
private Servo gripper = null;
|
||||
private DcMotor arm = null;
|
||||
private DistanceSensor distance = null;
|
||||
|
||||
|
||||
private ElapsedTime runtime = new ElapsedTime();
|
||||
|
||||
// Calculate the COUNTS_PER_INCH for your specific drive train.
|
||||
// Go to your motor vendor website to determine your motor's COUNTS_PER_MOTOR_REV
|
||||
// For external drive gearing, set DRIVE_GEAR_REDUCTION as needed.
|
||||
// For example, use a value of 2.0 for a 12-tooth spur gear driving a 24-tooth spur gear.
|
||||
// This is gearing DOWN for less speed and more torque.
|
||||
// For gearing UP, use a gear ratio less than 1.0. Note this will affect the direction of wheel rotation.
|
||||
static final double COUNTS_PER_MOTOR_REV = 537.6; // eg: TETRIX Motor Encoder
|
||||
static final double DRIVE_GEAR_REDUCTION = 1.0; // No External Gearing.
|
||||
static final double WHEEL_DIAMETER_INCHES = 3.77953; // For figuring circumference
|
||||
static final double COUNTS_PER_INCH = (COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCTION) /
|
||||
(WHEEL_DIAMETER_INCHES * Math.PI);
|
||||
static final double COUNTS_PER_ARM_INCH = (COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCTION) / (2.7 * Math.PI);
|
||||
static final double DRIVE_SPEED = 0.3;
|
||||
static final double TURN_SPEED = 0.4;
|
||||
|
||||
static final double LONG_TIMEOUT = 1000;
|
||||
static final double DEGREE_TOO_DISTANCE = 0.21944444444;
|
||||
static final double ARM_SPEED = .1;
|
||||
static final double TICKS_TO_DEGREES = 0.07462686567;
|
||||
|
||||
@Override
|
||||
public void runOpMode()
|
||||
{
|
||||
hardwareinit();
|
||||
|
||||
// Send telemetry message to indicate successful Encoder reset
|
||||
/* telemetry.addData("Starting at", "%7d :%7d",
|
||||
leftDrive.getCurrentPosition(),
|
||||
rightDrive.getCurrentPosition(),
|
||||
backleftDrive.getCurrentPosition(),
|
||||
backrightDrive.getCurrentPosition());*/
|
||||
|
||||
telemetry.update();
|
||||
|
||||
// Wait for the game to start (driver presses PLAY)
|
||||
waitForStart();
|
||||
{
|
||||
executeAuto();
|
||||
|
||||
}
|
||||
|
||||
// Step through each leg of the path,
|
||||
// Note: Reverse movement is obtained by setting a negative distance (not speed)
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
|
||||
public void driveForward(double distance)
|
||||
{
|
||||
leftDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
rightDrive.setDirection(DcMotor.Direction.FORWARD);
|
||||
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT); // S1: Forward 47 Inches with 5 Sec timeout
|
||||
}
|
||||
|
||||
public void straightLeft(double distance)
|
||||
{
|
||||
leftDrive.setDirection(DcMotor.Direction.FORWARD);
|
||||
rightDrive.setDirection(DcMotor.Direction.FORWARD);
|
||||
backrightDrive.setDirection(DcMotor.Direction.FORWARD);
|
||||
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT);
|
||||
}
|
||||
|
||||
public void straightRight(double distance)
|
||||
{
|
||||
leftDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
rightDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
backleftDrive.setDirection(DcMotor.Direction.FORWARD);
|
||||
encoderDrive(DRIVE_SPEED, distance, distance, LONG_TIMEOUT);
|
||||
}
|
||||
|
||||
public void turnLeft(double degrees)
|
||||
{
|
||||
leftDrive.setDirection(DcMotor.Direction.FORWARD);
|
||||
rightDrive.setDirection(DcMotor.Direction.FORWARD);
|
||||
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
backleftDrive.setDirection(DcMotor.Direction.FORWARD);
|
||||
double turning_distance = degrees * DEGREE_TOO_DISTANCE;
|
||||
encoderDrive(DRIVE_SPEED, turning_distance, turning_distance, LONG_TIMEOUT);
|
||||
}
|
||||
|
||||
public void turnRight(double degrees) {
|
||||
leftDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
rightDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
backrightDrive.setDirection(DcMotor.Direction.FORWARD);
|
||||
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
double turning_distance = degrees * DEGREE_TOO_DISTANCE;
|
||||
encoderDrive(DRIVE_SPEED, turning_distance, turning_distance, LONG_TIMEOUT);
|
||||
}
|
||||
|
||||
|
||||
public void raisearm(int degrees) {
|
||||
armEncoder(ARM_SPEED, degrees*TICKS_TO_DEGREES, LONG_TIMEOUT);
|
||||
|
||||
}
|
||||
public void hardwareinit()
|
||||
{
|
||||
leftDrive = hardwareMap.get(DcMotor.class, "Drive front lt");
|
||||
rightDrive = hardwareMap.get(DcMotor.class, "Drive front rt");
|
||||
backleftDrive = hardwareMap.get(DcMotor.class, "Drive back lt");
|
||||
backrightDrive = hardwareMap.get(DcMotor.class, "Drive back rt");
|
||||
distanceRight = hardwareMap.get(DistanceSensor.class, "color right");
|
||||
distanceLeft = hardwareMap.get(DistanceSensor.class, "color left");
|
||||
gripper = hardwareMap.get(Servo.class, "gripper");
|
||||
arm = hardwareMap.get(DcMotor.class, "arm raise");
|
||||
wrist = hardwareMap.get(Servo.class, "wrist");
|
||||
distance = hardwareMap.get(DistanceSensor.class, "distance");
|
||||
sleep(1000);
|
||||
// To drive forward, most robots need the motor on one side to be reversed, because the axles point in opposite directions.
|
||||
// When run, this OpMode should start both motors driving forward. So adjust these two lines based on your first test drive.
|
||||
// Note: The settings here assume direct drive on left and right wheels. Gear Reduction or 90 Deg drives may require direction flips
|
||||
leftDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
rightDrive.setDirection(DcMotor.Direction.FORWARD);
|
||||
backrightDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
backleftDrive.setDirection(DcMotor.Direction.REVERSE);
|
||||
arm.setDirection(DcMotor.Direction.REVERSE);
|
||||
|
||||
leftDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
|
||||
rightDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
|
||||
backleftDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
|
||||
backrightDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
|
||||
arm.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
|
||||
|
||||
|
||||
leftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
rightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
backrightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
backleftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
arm.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
}
|
||||
public void testWrist()
|
||||
{
|
||||
wrist.setPosition(0);
|
||||
sleep(3000);
|
||||
wrist.setPosition(1);
|
||||
sleep(3000);
|
||||
}
|
||||
public void testGripper()
|
||||
{
|
||||
gripper.setPosition(0.5);
|
||||
|
||||
}
|
||||
@SuppressLint("SuspiciousIndentation")
|
||||
public void executeAuto()
|
||||
{
|
||||
|
||||
arm.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
|
||||
driveForward(26);
|
||||
sleep(500);
|
||||
|
||||
int distanceleft = (int)distanceLeft.getDistance(DistanceUnit.INCH);
|
||||
int distanceright = (int)distanceRight.getDistance(DistanceUnit.INCH);
|
||||
telemetry.addData("color left sensor",distanceleft);
|
||||
telemetry.addData("color right sensor",distanceright);
|
||||
telemetry.update();
|
||||
|
||||
if (distanceleft < 7)
|
||||
{
|
||||
telemetry.addData("postion","left");
|
||||
telemetry.update();
|
||||
turnLeft(90);
|
||||
straightLeft(2);
|
||||
driveForward(6);
|
||||
raisearm(80);
|
||||
arm.setPower(0);
|
||||
driveForward(-21);
|
||||
straightLeft(32);
|
||||
driveForward(-10);
|
||||
straightRight(33);
|
||||
driveForward(-7.5);
|
||||
raisearm(80);
|
||||
wrist.setPosition(0);
|
||||
raisearm(100);
|
||||
gripper.setPosition(0.3);
|
||||
sleep(500);
|
||||
driveForward(4.5);
|
||||
sleep(500);
|
||||
driveForward(1.5);
|
||||
terminateOpModeNow();
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
if (distanceright < 7)
|
||||
{
|
||||
telemetry.addData("postion", "right");
|
||||
telemetry.update();
|
||||
straightRight(12);
|
||||
raisearm(80);
|
||||
arm.setPower(0);
|
||||
driveForward(-15.5);
|
||||
turnLeft(90);
|
||||
straightLeft(15);
|
||||
driveForward(-20.5);
|
||||
straightRight(19);
|
||||
driveForward(-1.5);
|
||||
raisearm(80);
|
||||
wrist.setPosition(0);
|
||||
raisearm(100);
|
||||
gripper.setPosition(0.35);
|
||||
driveForward(8.5);
|
||||
terminateOpModeNow();
|
||||
|
||||
|
||||
}
|
||||
else
|
||||
telemetry.addData("postion","center");
|
||||
telemetry.update();
|
||||
driveForward(3.5);
|
||||
raisearm(80);
|
||||
arm.setPower(0);
|
||||
driveForward(-8);
|
||||
straightRight(11.5);
|
||||
driveForward(-15);
|
||||
turnLeft(90);
|
||||
straightLeft(15);
|
||||
driveForward(-18);
|
||||
straightRight(29);
|
||||
raisearm(80);
|
||||
wrist.setPosition(0);
|
||||
raisearm(100);
|
||||
gripper.setPosition(0.3);
|
||||
sleep(500);
|
||||
driveForward(5);
|
||||
terminateOpModeNow();
|
||||
|
||||
|
||||
|
||||
//Values were created from robot with wheel issues 9/28/23
|
||||
|
||||
telemetry.addData("Path", "Complete");
|
||||
telemetry.update();
|
||||
// sleep(1000); // pause to display final telemetry message.
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Method to perform a relative move, based on encoder counts.
|
||||
* Encoders are not reset as the move is based on the current position.
|
||||
* Move will stop if any of three conditions occur:
|
||||
* 1) Move gets to the desired position
|
||||
* 2) Move runs out of time
|
||||
* 3) Driver stops the opmode running.
|
||||
|
||||
*/
|
||||
|
||||
public void encoderDrive(double speed,
|
||||
double leftInches, double rightInches,
|
||||
double timeoutS) {
|
||||
int newLeftTarget;
|
||||
int newRightTarget;
|
||||
int newBackLeftTarget;
|
||||
int newbackRightTarget;
|
||||
|
||||
|
||||
if (opModeIsActive()) {
|
||||
|
||||
// Determine new target position, and pass to motor controller
|
||||
newLeftTarget = leftDrive.getCurrentPosition() + (int) (leftInches * COUNTS_PER_INCH);
|
||||
newRightTarget = rightDrive.getCurrentPosition() + (int) (rightInches * COUNTS_PER_INCH);
|
||||
newBackLeftTarget = backleftDrive.getCurrentPosition() + (int) (leftInches * COUNTS_PER_INCH);
|
||||
newbackRightTarget = backrightDrive.getCurrentPosition() + (int) (rightInches * COUNTS_PER_INCH);
|
||||
leftDrive.setTargetPosition(newLeftTarget);
|
||||
rightDrive.setTargetPosition(newRightTarget);
|
||||
backrightDrive.setTargetPosition(newbackRightTarget);
|
||||
backleftDrive.setTargetPosition(newBackLeftTarget);
|
||||
|
||||
// Turn On RUN_TO_POSITION
|
||||
leftDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
|
||||
rightDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
|
||||
backrightDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
|
||||
backleftDrive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
|
||||
|
||||
// reset the timeout time and start motion.
|
||||
runtime.reset();
|
||||
leftDrive.setPower(Math.abs(speed));
|
||||
rightDrive.setPower(Math.abs(speed));
|
||||
backrightDrive.setPower(Math.abs(speed));
|
||||
backleftDrive.setPower(Math.abs(speed));
|
||||
|
||||
// keep looping while we are still active, and there is time left, and both motors are running.
|
||||
// Note: We use (isBusy() && isBusy()) in the loop test, which means that when EITHER motor hits
|
||||
// its target position, the motion will stop. This is "safer" in the event that the robot will
|
||||
// always end the motion as soon as possible.
|
||||
// However, if you require that BOTH motors have finished their moves before the robot continues
|
||||
// onto the next step, use (isBusy() || isBusy()) in the loop test.
|
||||
while (opModeIsActive() &&
|
||||
(runtime.seconds() < timeoutS) &&
|
||||
(leftDrive.isBusy() && rightDrive.isBusy() && backleftDrive.isBusy() && backrightDrive.isBusy() && backrightDrive.isBusy())) {
|
||||
|
||||
// Display it for the driver.
|
||||
telemetry.addData("Running to", " %7d :%7d", newLeftTarget, newRightTarget);
|
||||
telemetry.addData("Currently at", " at %7d :%7d",
|
||||
leftDrive.getCurrentPosition(), rightDrive.getCurrentPosition(), backrightDrive.getCurrentPosition(), backleftDrive.getCurrentPosition());
|
||||
telemetry.update();
|
||||
}
|
||||
|
||||
|
||||
leftDrive.setPower(0);
|
||||
rightDrive.setPower(0);
|
||||
backrightDrive.setPower(0);
|
||||
backleftDrive.setPower(0);
|
||||
|
||||
|
||||
// Turn off RUN_TO_POSITION
|
||||
leftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
rightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
backleftDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
backrightDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
|
||||
sleep(250); // optional pause after each move.
|
||||
}
|
||||
}
|
||||
|
||||
public void armEncoder(double speed,
|
||||
double Inches, double timeoutS) {
|
||||
int newarmTarget;
|
||||
|
||||
|
||||
if (opModeIsActive()) {
|
||||
|
||||
// Determine new target position, and pass to motor controller
|
||||
newarmTarget = arm.getCurrentPosition() + (int) (Inches * COUNTS_PER_ARM_INCH);
|
||||
arm.setTargetPosition(newarmTarget);
|
||||
|
||||
// Turn On RUN_TO_POSITION
|
||||
arm.setMode(DcMotor.RunMode.RUN_TO_POSITION);
|
||||
|
||||
// reset the timeout time and start motion.
|
||||
runtime.reset();
|
||||
arm.setPower(Math.abs(speed));
|
||||
|
||||
// keep looping while we are still active, and there is time left, and both motors are running.
|
||||
// Note: We use (isBusy() && isBusy()) in the loop test, which means that when EITHER motor hits
|
||||
// its target position, the motion will stop. This is "safer" in the event that the robot will
|
||||
// always end the motion as soon as possible.
|
||||
// However, if you require that BOTH motors have finished their moves before the robot continues
|
||||
// onto the next step, use (isBusy() || isBusy()) in the loop test.
|
||||
while (opModeIsActive() &&
|
||||
(runtime.seconds() < timeoutS) &&
|
||||
(arm.isBusy())) {
|
||||
|
||||
// Display it for the driver.
|
||||
telemetry.addData("Running to", " %7d", newarmTarget);
|
||||
telemetry.addData("Currently at", " at %7d",
|
||||
arm.getCurrentPosition());
|
||||
telemetry.update();
|
||||
}
|
||||
|
||||
|
||||
arm.setPower(0);
|
||||
|
||||
|
||||
// Turn off RUN_TO_POSITION
|
||||
arm.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
|
||||
|
||||
}
|
||||
}
|
||||
}
|
@ -33,9 +33,7 @@ import android.annotation.SuppressLint;
|
||||
|
||||
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
|
||||
import com.qualcomm.robotcore.hardware.ColorSensor;
|
||||
import com.qualcomm.robotcore.hardware.DcMotor;
|
||||
import com.qualcomm.robotcore.hardware.DcMotorSimple;
|
||||
import com.qualcomm.robotcore.hardware.DistanceSensor;
|
||||
import com.qualcomm.robotcore.hardware.Servo;
|
||||
import com.qualcomm.robotcore.util.ElapsedTime;
|
||||
@ -68,9 +66,9 @@ import org.firstinspires.ftc.robotcore.external.navigation.DistanceUnit;
|
||||
* Remove or comment out the @Disabled line to add this opmode to the Driver Station OpMode list
|
||||
*/
|
||||
|
||||
@Autonomous(name="red (backstage)", group="Robot")
|
||||
@Autonomous(name="red (direct)", group="Robot")
|
||||
//@Disabled
|
||||
public class Autonomoustest extends LinearOpMode {
|
||||
public class RedDirect extends LinearOpMode {
|
||||
|
||||
/* Declare OpMode members. */
|
||||
private DcMotor leftDrive = null;
|
||||
@ -261,20 +259,18 @@ public class Autonomoustest extends LinearOpMode {
|
||||
arm.setPower(0);
|
||||
driveForward(-21);
|
||||
straightLeft(32);
|
||||
driveForward(18);
|
||||
driveForward(-28);
|
||||
driveForward(-10);
|
||||
straightRight(33);
|
||||
driveForward(-1.5);
|
||||
telemetry.addData("distance back", distance.getDistance(DistanceUnit.INCH));
|
||||
raisearm(80);
|
||||
wrist.setPosition(0);
|
||||
raisearm(100);
|
||||
gripper.setPosition(0);
|
||||
gripper.setPosition(0.25);
|
||||
sleep(500);
|
||||
driveForward(5);
|
||||
raisearm(-270);
|
||||
raisearm(50);
|
||||
wrist.setPosition(1);
|
||||
driveForward(-5);
|
||||
telemetry.addData("distance back", distance.getDistance(DistanceUnit.INCH));
|
||||
telemetry.update();
|
||||
terminateOpModeNow();
|
||||
|
||||
|
||||
@ -288,23 +284,15 @@ public class Autonomoustest extends LinearOpMode {
|
||||
straightRight(12);
|
||||
raisearm(80);
|
||||
arm.setPower(0);
|
||||
driveForward(-15.5);
|
||||
driveForward(-10);
|
||||
turnLeft(90);
|
||||
straightLeft(15);
|
||||
driveForward(8);
|
||||
driveForward(-28.5);
|
||||
straightRight(19);
|
||||
driveForward(-1.5);
|
||||
driveForward(12);
|
||||
raisearm(80);
|
||||
wrist.setPosition(0);
|
||||
raisearm(100);
|
||||
gripper.setPosition(0);
|
||||
gripper.setPosition(0.25);
|
||||
sleep(500);
|
||||
driveForward(5);
|
||||
raisearm(-270);
|
||||
raisearm(50);
|
||||
wrist.setPosition(1);
|
||||
driveForward(-5);
|
||||
terminateOpModeNow();
|
||||
|
||||
|
||||
@ -320,20 +308,18 @@ else
|
||||
driveForward(-15);
|
||||
turnLeft(90);
|
||||
straightLeft(15);
|
||||
driveForward(8);
|
||||
driveForward(-26);
|
||||
driveForward(-18);
|
||||
straightRight(29);
|
||||
driveForward(-1.5);
|
||||
telemetry.addData("distance back", distance.getDistance(DistanceUnit.INCH));
|
||||
raisearm(80);
|
||||
wrist.setPosition(0);
|
||||
raisearm(100);
|
||||
gripper.setPosition(0);
|
||||
gripper.setPosition(0.25);
|
||||
telemetry.addData("distance back", distance.getDistance(DistanceUnit.INCH));
|
||||
telemetry.update();
|
||||
sleep(500);
|
||||
driveForward(5);
|
||||
raisearm(-270);
|
||||
raisearm(50);
|
||||
wrist.setPosition(1);
|
||||
driveForward(-5);
|
||||
terminateOpModeNow();
|
||||
|
||||
|
@ -0,0 +1,99 @@
|
||||
package org.firstinspires.ftc.teamcode;
|
||||
|
||||
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
|
||||
import com.qualcomm.robotcore.hardware.DcMotor;
|
||||
|
||||
@TeleOp( name = "scds-chassis-manual")
|
||||
public class SCDSChassisDriverMode extends OpMode {
|
||||
|
||||
DcMotor frontRight;
|
||||
DcMotor backRight;
|
||||
DcMotor frontLeft;
|
||||
DcMotor backLeft;
|
||||
public double axial;
|
||||
public double lateral;
|
||||
public double yaw;
|
||||
|
||||
final static double MOTOR_LO_SPEED_RATIO = 3.5;
|
||||
final static double MOTOR_HI_SPEED_RATIO = 2.25;
|
||||
final static double ARM_POWER = 3.5;
|
||||
double RUNNING_MOTOR_SPEED_RATIO = MOTOR_LO_SPEED_RATIO;
|
||||
double CURRENT_SPEED_RATIO = MOTOR_HI_SPEED_RATIO;
|
||||
|
||||
@Override
|
||||
public void init() {
|
||||
telemetry.addData("Status","In Init()");
|
||||
telemetry.update();
|
||||
frontRight = hardwareMap.dcMotor.get("Drive front rt");
|
||||
backRight = hardwareMap.dcMotor.get("Drive back rt");
|
||||
frontLeft = hardwareMap.dcMotor.get("Drive front lt");
|
||||
backLeft = hardwareMap.dcMotor.get("Drive back lt");
|
||||
}
|
||||
|
||||
private void setForwardDirection() {
|
||||
telemetry.addData("Status","setForwardDirection()");
|
||||
telemetry.update();
|
||||
frontLeft.setDirection(DcMotor.Direction.REVERSE);
|
||||
backLeft.setDirection(DcMotor.Direction.FORWARD);
|
||||
frontRight.setDirection(DcMotor.Direction.REVERSE);
|
||||
backRight.setDirection(DcMotor.Direction.FORWARD);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void loop() {
|
||||
/*
|
||||
Initialize the wheels
|
||||
*/
|
||||
setForwardDirection();
|
||||
|
||||
/*
|
||||
Turn on high speed on the motors
|
||||
*/
|
||||
if(gamepad1.a) {
|
||||
RUNNING_MOTOR_SPEED_RATIO = MOTOR_HI_SPEED_RATIO;
|
||||
}
|
||||
|
||||
/*
|
||||
Turn on low speed on the motors
|
||||
*/
|
||||
if(gamepad1.b) {
|
||||
RUNNING_MOTOR_SPEED_RATIO = MOTOR_LO_SPEED_RATIO;
|
||||
}
|
||||
|
||||
axial = -gamepad1.left_stick_y/CURRENT_SPEED_RATIO; // Note: pushing stick forward gives negative value
|
||||
lateral = gamepad1.left_stick_x/CURRENT_SPEED_RATIO;
|
||||
yaw = gamepad1.right_stick_x/CURRENT_SPEED_RATIO;
|
||||
|
||||
// Combine the joystick requests for each axis-motion to determine each wheel's power.
|
||||
// Set up a variable for each drive wheel to save the power level for telemetry.
|
||||
double leftFrontPower = axial + lateral + yaw;
|
||||
double rightFrontPower = axial - lateral - yaw;
|
||||
double leftBackPower = axial - lateral + yaw;
|
||||
double rightBackPower = axial + lateral - yaw;
|
||||
|
||||
// Normalize the values so no wheel power exceeds 100%
|
||||
// This ensures that the robot maintains the desired motion.
|
||||
double max = Math.max(Math.abs(leftFrontPower), Math.abs(rightFrontPower));
|
||||
max = Math.max(max, Math.abs(leftBackPower));
|
||||
max = Math.max(max, Math.abs(rightBackPower));
|
||||
|
||||
if (max > 1.0) {
|
||||
leftFrontPower /= max;
|
||||
rightFrontPower /= max;
|
||||
leftBackPower /= max;
|
||||
rightBackPower /= max;
|
||||
}
|
||||
frontLeft.setPower(leftFrontPower);
|
||||
frontRight.setPower(rightFrontPower);
|
||||
backLeft.setPower(leftBackPower);
|
||||
backRight.setPower(rightBackPower);
|
||||
|
||||
// Show the elapsed game time and wheel power
|
||||
telemetry.addData("Front left, Right", "%4.2f, %4.2f", leftFrontPower, rightFrontPower);
|
||||
telemetry.addData("Back left, Right", "%4.2f, %4.2f", leftBackPower, rightBackPower);
|
||||
telemetry.update();
|
||||
|
||||
}
|
||||
|
||||
}
|
@ -0,0 +1,215 @@
|
||||
package org.firstinspires.ftc.teamcode;
|
||||
|
||||
|
||||
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
|
||||
import com.qualcomm.robotcore.hardware.DcMotor;
|
||||
import com.qualcomm.robotcore.hardware.Servo;
|
||||
|
||||
|
||||
@TeleOp( name = "manual control")
|
||||
public class manual extends OpMode {
|
||||
|
||||
DcMotor arm;
|
||||
Servo gripper;
|
||||
Servo wrist;
|
||||
public double axial;
|
||||
public double lateral;
|
||||
public double yaw;
|
||||
DcMotor frontRight;
|
||||
DcMotor backRight;
|
||||
DcMotor frontLeft;
|
||||
DcMotor backLeft;
|
||||
DcMotor hang;
|
||||
private Servo launch;
|
||||
|
||||
|
||||
/**
|
||||
* this function takes a long milliseconds parameter and sleeps
|
||||
* @param millis milliseconds to sleep
|
||||
*/
|
||||
public void sleepmillis(long millis) {
|
||||
try {
|
||||
Thread.sleep(millis);
|
||||
} catch (Exception e) {
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* stops all drive motors
|
||||
*/
|
||||
public void off() {
|
||||
arm.setPower(0);
|
||||
frontRight.setPower(0);
|
||||
backRight.setPower(0);
|
||||
frontLeft.setPower(0);
|
||||
backLeft.setPower(0);
|
||||
|
||||
}
|
||||
/**
|
||||
* User defined init method
|
||||
* This method will be called once when the INIT button is pressed.
|
||||
*/
|
||||
|
||||
public void init() {
|
||||
|
||||
|
||||
telemetry.addData("Status","In Init()");
|
||||
telemetry.update();
|
||||
arm = hardwareMap.dcMotor.get("arm raise");
|
||||
gripper = hardwareMap.servo.get("gripper");
|
||||
wrist = hardwareMap.servo.get("wrist");
|
||||
frontRight = hardwareMap.dcMotor.get("Drive front rt");
|
||||
backRight = hardwareMap.dcMotor.get("Drive back rt");
|
||||
frontLeft = hardwareMap.dcMotor.get("Drive front lt");
|
||||
backLeft = hardwareMap.dcMotor.get("Drive back lt");
|
||||
hang = hardwareMap.dcMotor.get("hang");
|
||||
launch = hardwareMap.servo.get("launch");
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* User defined init_loop method
|
||||
* This method will be called repeatedly when the INIT button is pressed.
|
||||
* This method is optional. By default this method takes no action.
|
||||
*/
|
||||
public void init_loop(){
|
||||
// Wait for the game to start (driver presses PLAY)
|
||||
telemetry.addData("Status", "Initialized");
|
||||
telemetry.update();
|
||||
}
|
||||
/**
|
||||
* User defined start method.
|
||||
* This method will be called once when the PLAY button is first pressed.
|
||||
* This method is optional. By default this method takes not action. Example usage: Starting another thread.
|
||||
*/
|
||||
public void start() {
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* User defined stop method
|
||||
* This method will be called when this op mode is first disabled.
|
||||
* The stop method is optional. By default this method takes no action.
|
||||
*/
|
||||
public void stop(){
|
||||
|
||||
}
|
||||
|
||||
//double num = 2.25;
|
||||
final static double MOTOR_HI_SPEED_RATIO = 2;
|
||||
final static double MOTOR_MID_SPEED_RATIO = 2.35;
|
||||
final static double MOTOR_LO_SPEED_RATIO = 3.5;
|
||||
final static double ARM_POWER = 3.5;
|
||||
double num = MOTOR_HI_SPEED_RATIO;
|
||||
/**
|
||||
* User defined loop method.
|
||||
* This method will be called repeatedly in a loop while this op mode is running
|
||||
*/
|
||||
public void loop() {
|
||||
frontLeft.setDirection(DcMotor.Direction.REVERSE);
|
||||
backLeft.setDirection(DcMotor.Direction.REVERSE);
|
||||
frontRight.setDirection(DcMotor.Direction.FORWARD);
|
||||
backRight.setDirection(DcMotor.Direction.REVERSE);
|
||||
|
||||
|
||||
double armPower = gamepad2.right_stick_y/ARM_POWER;
|
||||
// Normalize the values so no wheel power exceeds 100%
|
||||
// This ensures that the robot maintains the desired motion.
|
||||
if(gamepad1.a)
|
||||
{
|
||||
num = MOTOR_HI_SPEED_RATIO;
|
||||
}
|
||||
if (gamepad1.x)
|
||||
{
|
||||
num = MOTOR_LO_SPEED_RATIO;
|
||||
}
|
||||
if (gamepad1.b)
|
||||
{
|
||||
num = MOTOR_MID_SPEED_RATIO;
|
||||
}
|
||||
if(gamepad2.right_stick_y != 0)
|
||||
{
|
||||
arm.setPower(armPower);
|
||||
telemetry.addData("joystick y value", gamepad2.right_stick_y);
|
||||
telemetry.update();
|
||||
}
|
||||
else
|
||||
{
|
||||
arm.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
|
||||
arm.setPower(0);
|
||||
}
|
||||
if(gamepad2.left_bumper && gamepad2.right_bumper)
|
||||
{
|
||||
launch.setPosition(0);
|
||||
}
|
||||
if(gamepad2.left_trigger > 0.35)
|
||||
{
|
||||
gripper.setPosition(0);
|
||||
}
|
||||
if(gamepad2.right_trigger > 0.35){
|
||||
gripper.setPosition(1);
|
||||
}
|
||||
if(gamepad2.dpad_up)
|
||||
{
|
||||
wrist.setPosition(0.465);
|
||||
}
|
||||
if(gamepad2.dpad_down)
|
||||
{
|
||||
wrist.setPosition(1);
|
||||
}
|
||||
if(gamepad2.dpad_right)
|
||||
{
|
||||
wrist.setPosition(0);
|
||||
}
|
||||
if (gamepad1.dpad_up)
|
||||
{
|
||||
hang.setPower(1);
|
||||
}
|
||||
hang.setPower(0);
|
||||
if (gamepad1.dpad_down)
|
||||
{
|
||||
hang.setPower(-.5);
|
||||
}
|
||||
else {
|
||||
hang.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
|
||||
hang.setPower(0);
|
||||
}
|
||||
axial = -gamepad1.left_stick_y/num; // Note: pushing stick forward gives negative value
|
||||
lateral = gamepad1.left_stick_x/num;
|
||||
yaw = gamepad1.right_stick_x/(num);
|
||||
// Combine the joystick requests for each axis-motion to determine each wheel's power.
|
||||
// Set up a variable for each drive wheel to save the power level for telemetry.
|
||||
double leftFrontPower = axial + lateral + yaw;
|
||||
double rightFrontPower = axial - lateral - yaw;
|
||||
double leftBackPower = axial - lateral + yaw;
|
||||
double rightBackPower = axial + lateral - yaw;
|
||||
// Normalize the values so no wheel power exceeds 100%
|
||||
// This ensures that the robot maintains the desired motion.
|
||||
double max = Math.max(Math.abs(leftFrontPower), Math.abs(rightFrontPower));
|
||||
max = Math.max(max, Math.abs(leftBackPower));
|
||||
max = Math.max(max, Math.abs(rightBackPower));
|
||||
if (max > 1.0) {
|
||||
leftFrontPower /= max;
|
||||
rightFrontPower /= max;
|
||||
leftBackPower /= max;
|
||||
rightBackPower /= max;
|
||||
}
|
||||
frontLeft.setPower(leftFrontPower);
|
||||
frontRight.setPower(rightFrontPower);
|
||||
backLeft.setPower(leftBackPower);
|
||||
backRight.setPower(rightBackPower);
|
||||
// Show the elapsed game time and wheel power
|
||||
telemetry.addData("Front left, Right", "%4.2f, %4.2f", leftFrontPower, rightFrontPower);
|
||||
telemetry.addData("Back left, Right", "%4.2f, %4.2f", leftBackPower, rightBackPower);
|
||||
telemetry.update();
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
}
|
@ -1,18 +1,15 @@
|
||||
package org.firstinspires.ftc.teamcode;
|
||||
|
||||
|
||||
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
|
||||
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
|
||||
import com.qualcomm.robotcore.hardware.DcMotor;
|
||||
import com.qualcomm.robotcore.hardware.DcMotorSimple;
|
||||
import com.qualcomm.robotcore.hardware.Gamepad;
|
||||
import com.qualcomm.robotcore.hardware.Servo;
|
||||
import com.qualcomm.robotcore.util.ElapsedTime;
|
||||
|
||||
|
||||
|
||||
@TeleOp( name = "manual control")
|
||||
public class arm extends OpMode {
|
||||
@TeleOp( name = "manual Chasis")
|
||||
public class manualChasis extends OpMode {
|
||||
|
||||
DcMotor arm;
|
||||
Servo gripper;
|
||||
@ -100,22 +97,33 @@ public class arm extends OpMode {
|
||||
|
||||
}
|
||||
|
||||
double num = 2.5;
|
||||
//double num = 2.25;
|
||||
final static double MOTOR_HI_SPEED_RATIO = 2.25;
|
||||
final static double MOTOR_LO_SPEED_RATIO = 3.5;
|
||||
final static double ARM_POWER = 3.5;
|
||||
double num = MOTOR_HI_SPEED_RATIO;
|
||||
/**
|
||||
* User defined loop method.
|
||||
* This method will be called repeatedly in a loop while this op mode is running
|
||||
*/
|
||||
public void loop() {
|
||||
frontLeft.setDirection(DcMotor.Direction.REVERSE);
|
||||
backLeft.setDirection(DcMotor.Direction.REVERSE);
|
||||
frontRight.setDirection(DcMotor.Direction.FORWARD);
|
||||
backRight.setDirection(DcMotor.Direction.REVERSE);
|
||||
backLeft.setDirection(DcMotor.Direction.FORWARD);
|
||||
frontRight.setDirection(DcMotor.Direction.REVERSE);
|
||||
backRight.setDirection(DcMotor.Direction.FORWARD);
|
||||
|
||||
|
||||
double armPower = gamepad2.right_stick_y/3.5;
|
||||
double armPower = gamepad2.right_stick_y/ARM_POWER;
|
||||
// Normalize the values so no wheel power exceeds 100%
|
||||
// This ensures that the robot maintains the desired motion.
|
||||
|
||||
if(gamepad1.a)
|
||||
{
|
||||
num = MOTOR_HI_SPEED_RATIO;
|
||||
}
|
||||
if (gamepad1.b)
|
||||
{
|
||||
num = MOTOR_LO_SPEED_RATIO;
|
||||
}
|
||||
if(gamepad2.right_stick_y != 0)
|
||||
{
|
||||
arm.setPower(armPower);
|
BIN
doc/Image/autopath.png
Normal file
BIN
doc/Image/autopath.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 229 KiB |
Reference in New Issue
Block a user