18 Commits

Author SHA1 Message Date
bee78d7d71 WIP bobito tunings 2024-10-30 19:39:49 -07:00
b442008fb6 Updating localizer/tuning values for Bobito 2024-10-30 12:54:51 -07:00
4e8c37e01b Added motor direction logic 2024-10-22 22:46:20 -07:00
6a125ff247 Added tuned values for Bobito 2024-10-22 22:46:04 -07:00
1c4b3723c3 Added debugging for encoder logic 2024-10-22 22:44:55 -07:00
7a028835f8 Removing unnecessary files for the current iteration of this drive encoded robot 2024-10-22 22:44:24 -07:00
cd10d3a01b Preliminary configuration for Bobito as a DriveEncoder robot 2024-10-22 20:36:02 -07:00
89f4c1b9a0 Merge remote-tracking branch 'origin/branch-rc-chassis-14493' into branch-rc-chassis-14493 2024-10-22 20:26:28 -07:00
6f784936d2 Add Carlos's file 2024-10-22 20:26:15 -07:00
945a77ca49 Aditya's sample code 2024-10-22 17:28:55 -07:00
43c505e292 Updated values back to when they worked 2024-10-22 16:26:33 -07:00
5cec300e58 Upgrade libs to 10.1 2024-10-21 21:56:23 -07:00
00146b2e40 Currently working with Pedro Pathing and tuned as of this date. 2024-10-21 21:54:09 -07:00
ba5e1e6fe4 Committing translational and heading PID 2024-10-20 19:03:52 -07:00
a64a558f2f Commit tune in progress 2024-10-20 17:23:31 -07:00
99099bf78f Changing paths a bit, 3-wheel w/o IMU. This checks out 2024-10-20 17:08:05 -07:00
efd3302645 Outstanding robot 2024-09-26 16:16:10 -07:00
a7f060c3eb Add initial code 2024-09-24 17:10:22 -07:00
28 changed files with 714 additions and 1744 deletions

View File

@ -0,0 +1,122 @@
package org.firstinspires.ftc.teamcode;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.config.Config;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
/**
* This is the Circle autonomous OpMode. It runs the robot in a PathChain that's actually not quite
* a circle, but some Bezier curves that have control points set essentially in a square. However,
* it turns enough to tune your centripetal force correction and some of your heading. Some lag in
* heading is to be expected.
*
* @author Anyi Lin - 10158 Scott's Bots
* @author Aaron Yang - 10158 Scott's Bots
* @author Harrison Womack - 10158 Scott's Bots
* @version 1.0, 3/12/2024
*/
@Config
@Autonomous(name = "AutoExample", group = "Autonomous Pathing Tuning")
public class AutoExample extends OpMode {
private Telemetry telemetryA;
private Follower follower;
private PathChain path;
private final Pose startPose = new Pose(12.0, 11, 90);
/**
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
* initializes the FTC Dashboard telemetry.
*/
@Override
public void init() {
follower = new Follower(hardwareMap);
follower.setMaxPower(.6);
follower.setStartingPose(startPose);
path = follower.pathBuilder()
.addPath(
// Line 1
new BezierLine(
new Point(12.804, 11.223, Point.CARTESIAN),
new Point(12.804, 42.362, Point.CARTESIAN)
)
)
.setTangentHeadingInterpolation()
.addPath(
// Line 2
new BezierCurve(
new Point(12.804, 42.362, Point.CARTESIAN),
new Point(11.381, 57.379, Point.CARTESIAN),
new Point(31.614, 56.588, Point.CARTESIAN)
)
)
.setTangentHeadingInterpolation()
.addPath(
// Line 3
new BezierLine(
new Point(31.614, 56.588, Point.CARTESIAN),
new Point(51.214, 56.746, Point.CARTESIAN)
)
)
.setTangentHeadingInterpolation()
.addPath(
// Line 4
new BezierCurve(
new Point(51.214, 56.746, Point.CARTESIAN),
new Point(64.334, 58.643, Point.CARTESIAN),
new Point(61.172, 45.524, Point.CARTESIAN)
)
)
.setTangentHeadingInterpolation()
.addPath(
// Line 5
new BezierCurve(
new Point(61.172, 45.524, Point.CARTESIAN),
new Point(36.198, 26.239, Point.CARTESIAN),
new Point(19.759, 11.065, Point.CARTESIAN)
)
)
.setTangentHeadingInterpolation()
.build();
follower.followPath(path);
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
telemetryA.update();
}
/**
* This runs the OpMode, updating the Follower as well as printing out the debug statements to
* the Telemetry, as well as the FTC Dashboard.
*/
@Override
public void loop() {
follower.update();
if (follower.atParametricEnd()) {
follower.followPath(path);
}
follower.telemetryDebug(telemetryA);
}
}

View File

@ -1,4 +1,4 @@
package org.firstinspires.ftc.teamcode.cometbots; package org.firstinspires.ftc.teamcode;
import com.acmerobotics.dashboard.FtcDashboard; import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.config.Config; import com.acmerobotics.dashboard.config.Config;
@ -9,7 +9,6 @@ import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import org.firstinspires.ftc.robotcore.external.Telemetry; import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower; import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose; import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine; import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain; import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point; import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
@ -26,15 +25,15 @@ import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
* @version 1.0, 3/12/2024 * @version 1.0, 3/12/2024
*/ */
@Config @Config
@Autonomous(name = "BlueNonBasketAuto", group = "Autonomous Pathing Tuning") @Autonomous(name = "AutoExampleSeason2025V1", group = "Autonomous Pathing Tuning")
public class BlueNonBasketAuto extends OpMode { public class AutoExampleSeason2025V1 extends OpMode {
private Telemetry telemetryA; private Telemetry telemetryA;
private Follower follower; private Follower follower;
private PathChain path; private PathChain path;
private final Pose startPose = new Pose(10.929, 55.446, 0); private final Pose startPose = new Pose(15.0, 35, 90);
/** /**
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this * This initializes the Follower and creates the PathChain for the "circle". Additionally, this
@ -44,93 +43,85 @@ public class BlueNonBasketAuto extends OpMode {
public void init() { public void init() {
follower = new Follower(hardwareMap); follower = new Follower(hardwareMap);
follower.setMaxPower(.45); follower.setMaxPower(.375);
follower.setStartingPose(startPose); follower.setStartingPose(startPose);
path = follower.pathBuilder() path = follower.pathBuilder()
.addPath( .addPath(
// Line 1 // Line 1
new BezierCurve( new BezierLine(
new Point(10.929, 55.446, Point.CARTESIAN), new Point(15.000, 35.000, Point.CARTESIAN),
new Point(42.429, 46.446, Point.CARTESIAN), new Point(60.000, 35.000, Point.CARTESIAN)
new Point(36.321, 38.089, Point.CARTESIAN) )
) )
) .setConstantHeadingInterpolation(Math.toRadians(90))
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath( .addPath(
// Line 2 // Line 2
new BezierLine( new BezierLine(
new Point(36.321, 38.089, Point.CARTESIAN), new Point(60.000, 35.000, Point.CARTESIAN),
new Point(59.786, 36.643, Point.CARTESIAN) new Point(60.000, 25.000, Point.CARTESIAN)
) )
) )
.setConstantHeadingInterpolation(Math.toRadians(0)) .setConstantHeadingInterpolation(Math.toRadians(90))
.addPath( .addPath(
// Line 3 // Line 3
new BezierLine( new BezierLine(
new Point(59.786, 36.643, Point.CARTESIAN), new Point(60.000, 25.000, Point.CARTESIAN),
new Point(59.304, 24.750, Point.CARTESIAN) new Point(15.000, 25.000, Point.CARTESIAN)
) )
) )
.setConstantHeadingInterpolation(Math.toRadians(0)) .setConstantHeadingInterpolation(Math.toRadians(90))
.addPath( .addPath(
// Line 4 // Line 4
new BezierLine( new BezierLine(
new Point(59.304, 24.750, Point.CARTESIAN), new Point(15.000, 25.000, Point.CARTESIAN),
new Point(13.982, 23.946, Point.CARTESIAN) new Point(60.000, 25.000, Point.CARTESIAN)
) )
) )
.setConstantHeadingInterpolation(Math.toRadians(0)) .setConstantHeadingInterpolation(Math.toRadians(90))
.addPath( .addPath(
// Line 5 // Line 5
new BezierLine( new BezierLine(
new Point(13.982, 23.946, Point.CARTESIAN), new Point(60.000, 25.000, Point.CARTESIAN),
new Point(59.464, 24.429, Point.CARTESIAN) new Point(60.000, 15.000, Point.CARTESIAN)
) )
) )
.setConstantHeadingInterpolation(Math.toRadians(0)) .setConstantHeadingInterpolation(Math.toRadians(90))
.addPath( .addPath(
// Line 6 // Line 6
new BezierLine( new BezierLine(
new Point(59.464, 24.429, Point.CARTESIAN), new Point(60.000, 15.000, Point.CARTESIAN),
new Point(58.982, 15.268, Point.CARTESIAN) new Point(15.000, 15.000, Point.CARTESIAN)
) )
) )
.setConstantHeadingInterpolation(Math.toRadians(0)) .setConstantHeadingInterpolation(Math.toRadians(90))
.addPath( .addPath(
// Line 7 // Line 7
new BezierLine( new BezierLine(
new Point(58.982, 15.268, Point.CARTESIAN), new Point(15.000, 15.000, Point.CARTESIAN),
new Point(13.821, 14.464, Point.CARTESIAN) new Point(60.000, 15.000, Point.CARTESIAN)
) )
) )
.setConstantHeadingInterpolation(Math.toRadians(0)) .setConstantHeadingInterpolation(Math.toRadians(90))
.addPath( .addPath(
// Line 8 // Line 8
new BezierLine( new BezierLine(
new Point(13.821, 14.464, Point.CARTESIAN), new Point(60.000, 15.000, Point.CARTESIAN),
new Point(58.661, 13.500, Point.CARTESIAN) new Point(60.000, 8.000, Point.CARTESIAN)
) )
) )
.setConstantHeadingInterpolation(Math.toRadians(0)) .setConstantHeadingInterpolation(Math.toRadians(90))
.addPath( .addPath(
// Line 9 // Line 9
new BezierLine( new BezierLine(
new Point(58.661, 13.500, Point.CARTESIAN), new Point(60.000, 8.000, Point.CARTESIAN),
new Point(58.339, 8.679, Point.CARTESIAN) new Point(15.000, 8.000, Point.CARTESIAN)
) )
) )
.setConstantHeadingInterpolation(Math.toRadians(0)) .setConstantHeadingInterpolation(Math.toRadians(90)).build();
.addPath(
// Line 10 follower.followPath(path);
new BezierLine(
new Point(58.339, 8.679, Point.CARTESIAN),
new Point(14.625, 8.518, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0)).build();
follower.followPath(path, true);
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry()); telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
telemetryA.update(); telemetryA.update();
@ -144,7 +135,7 @@ public class BlueNonBasketAuto extends OpMode {
public void loop() { public void loop() {
follower.update(); follower.update();
if (follower.atParametricEnd()) { if (follower.atParametricEnd()) {
follower.followPath(path, true); follower.followPath(path);
} }
follower.telemetryDebug(telemetryA); follower.telemetryDebug(telemetryA);
} }

View File

@ -0,0 +1,80 @@
package org.firstinspires.ftc.teamcode;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.config.Config;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
/**
* This is the Circle autonomous OpMode. It runs the robot in a PathChain that's actually not quite
* a circle, but some Bezier curves that have control points set essentially in a square. However,
* it turns enough to tune your centripetal force correction and some of your heading. Some lag in
* heading is to be expected.
*
* @author Anyi Lin - 10158 Scott's Bots
* @author Aaron Yang - 10158 Scott's Bots
* @author Harrison Womack - 10158 Scott's Bots
* @version 1.0, 3/12/2024
*/
@Config
@Autonomous(name = "AutoExampleThree", group = "Autonomous Pathing Tuning")
public class AutoExampleThree extends OpMode {
private Telemetry telemetryA;
private Follower follower;
private PathChain path;
private final Pose startPose = new Pose(10.0, 40, 90);
/**
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
* initializes the FTC Dashboard telemetry.
*/
@Override
public void init() {
follower = new Follower(hardwareMap);
follower.setMaxPower(.4);
follower.setStartingPose(startPose);
path = follower.pathBuilder()
.addPath(
// Line 1
new BezierCurve(
new Point(10.000, 20.000, Point.CARTESIAN),
new Point(29.089, 61.232, Point.CARTESIAN),
new Point(48.054, 19.607, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90)).build();
follower.followPath(path);
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
telemetryA.update();
}
/**
* This runs the OpMode, updating the Follower as well as printing out the debug statements to
* the Telemetry, as well as the FTC Dashboard.
*/
@Override
public void loop() {
follower.update();
if (follower.atParametricEnd()) {
follower.followPath(path);
}
follower.telemetryDebug(telemetryA);
}
}

View File

@ -0,0 +1,95 @@
package org.firstinspires.ftc.teamcode;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.config.Config;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
/**
* This is the Circle autonomous OpMode. It runs the robot in a PathChain that's actually not quite
* a circle, but some Bezier curves that have control points set essentially in a square. However,
* it turns enough to tune your centripetal force correction and some of your heading. Some lag in
* heading is to be expected.
*
* @author Anyi Lin - 10158 Scott's Bots
* @author Aaron Yang - 10158 Scott's Bots
* @author Harrison Womack - 10158 Scott's Bots
* @version 1.0, 3/12/2024
*/
@Config
@Autonomous(name = "AutoExampleTwo", group = "Autonomous Pathing Tuning")
public class AutoExampleTwo extends OpMode {
private Telemetry telemetryA;
private Follower follower;
private PathChain path;
private final Pose startPose = new Pose(10.0, 40, 90);
/**
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
* initializes the FTC Dashboard telemetry.
*/
@Override
public void init() {
follower = new Follower(hardwareMap);
follower.setMaxPower(.4);
follower.setStartingPose(startPose);
path = follower.pathBuilder()
.addPath(
// Line 1
new BezierLine(
new Point(10.000, 40.000, Point.CARTESIAN),
new Point(60.000, 40.000, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 2
new BezierLine(
new Point(60.000, 40.000, Point.CARTESIAN),
new Point(60.000, 25.000, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 3
new BezierLine(
new Point(60.000, 25.000, Point.CARTESIAN),
new Point(10.000, 25.000, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90)).build();
follower.followPath(path);
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
telemetryA.update();
}
/**
* This runs the OpMode, updating the Follower as well as printing out the debug statements to
* the Telemetry, as well as the FTC Dashboard.
*/
@Override
public void loop() {
follower.update();
if (follower.atParametricEnd()) {
follower.followPath(path);
}
follower.telemetryDebug(telemetryA);
}
}

View File

@ -27,10 +27,8 @@
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/ */
package org.firstinspires.ftc.teamcode.cometbots.projects; package org.firstinspires.ftc.teamcode;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_ENCODER_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR; import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR_DIRECTION; import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR; import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR;
@ -39,10 +37,6 @@ import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR_DIRECTION; import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR; import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR_DIRECTION; import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.LEFT_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.LEFT_ENCODER_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.RIGHT_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.RIGHT_ENCODER_DIRECTION;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode; import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp; import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
@ -80,12 +74,15 @@ import org.firstinspires.ftc.teamcode.pedroPathing.localization.Encoder;
* Remove or comment out the @Disabled line to add this OpMode to the Driver Station OpMode list * Remove or comment out the @Disabled line to add this OpMode to the Driver Station OpMode list
*/ */
@TeleOp(name="Basic: Omni Linear OpMode", group="Linear OpMode") @TeleOp(name = "Basic: Omni Linear OpMode", group = "Linear OpMode")
public class BasicOmniOpMode_Linear extends LinearOpMode { public class BasicOmniOpMode_Linear extends LinearOpMode {
// Declare OpMode members for each of the 4 motors. // Declare OpMode members for each of the 4 motors.
private final ElapsedTime runtime = new ElapsedTime(); private final ElapsedTime runtime = new ElapsedTime();
private Encoder leftFront;
private Encoder rightFront;
private Encoder leftRear;
private Encoder rightRear;
@Override @Override
public void runOpMode() { public void runOpMode() {
@ -96,18 +93,12 @@ public class BasicOmniOpMode_Linear extends LinearOpMode {
DcMotor rightFrontDrive = hardwareMap.get(DcMotor.class, FRONT_RIGHT_MOTOR); DcMotor rightFrontDrive = hardwareMap.get(DcMotor.class, FRONT_RIGHT_MOTOR);
DcMotor rightBackDrive = hardwareMap.get(DcMotor.class, BACK_RIGHT_MOTOR); DcMotor rightBackDrive = hardwareMap.get(DcMotor.class, BACK_RIGHT_MOTOR);
leftFront = new Encoder(hardwareMap.get(DcMotorEx.class, FRONT_LEFT_MOTOR));
leftRear = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_LEFT_MOTOR));
rightRear = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_RIGHT_MOTOR));
rightFront = new Encoder(hardwareMap.get(DcMotorEx.class, FRONT_RIGHT_MOTOR));
// TODO: replace these with your encoder ports
Encoder leftEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, LEFT_ENCODER));
Encoder rightEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, RIGHT_ENCODER));
Encoder strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_ENCODER));
// TODO: reverse any encoders necessary
leftEncoder.setDirection(LEFT_ENCODER_DIRECTION);
rightEncoder.setDirection(RIGHT_ENCODER_DIRECTION);
strafeEncoder.setDirection(BACK_ENCODER_DIRECTION);
// ######################################################################################## // ########################################################################################
// !!! IMPORTANT Drive Information. Test your motor directions. !!!!! // !!! IMPORTANT Drive Information. Test your motor directions. !!!!!
// ######################################################################################## // ########################################################################################
@ -123,11 +114,20 @@ public class BasicOmniOpMode_Linear extends LinearOpMode {
rightFrontDrive.setDirection(FRONT_RIGHT_MOTOR_DIRECTION); rightFrontDrive.setDirection(FRONT_RIGHT_MOTOR_DIRECTION);
rightBackDrive.setDirection(BACK_RIGHT_MOTOR_DIRECTION); rightBackDrive.setDirection(BACK_RIGHT_MOTOR_DIRECTION);
leftFrontDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
leftBackDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
rightFrontDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
rightBackDrive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
leftFrontDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
leftBackDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
rightFrontDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
rightBackDrive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
// Wait for the game to start (driver presses START) // Wait for the game to start (driver presses START)
telemetry.addData("Status", "Initialized"); telemetry.addData("Status", "Initialized");
telemetry.addData("Left Encoder Value", leftEncoder.getDeltaPosition());
telemetry.addData("Right Encoder Value", rightEncoder.getDeltaPosition());
telemetry.addData("Strafe Encoder Value", strafeEncoder.getDeltaPosition());
telemetry.update(); telemetry.update();
waitForStart(); waitForStart();
@ -138,16 +138,16 @@ public class BasicOmniOpMode_Linear extends LinearOpMode {
double max; double max;
// POV Mode uses left joystick to go forward & strafe, and right joystick to rotate. // POV Mode uses left joystick to go forward & strafe, and right joystick to rotate.
double axial = -gamepad1.left_stick_y; // Note: pushing stick forward gives negative value double axial = -gamepad1.left_stick_y; // Note: pushing stick forward gives negative value
double lateral = gamepad1.left_stick_x; double lateral = gamepad1.left_stick_x;
double yaw = gamepad1.right_stick_x; double yaw = gamepad1.right_stick_x;
// Combine the joystick requests for each axis-motion to determine each wheel's power. // Combine the joystick requests for each axis-motion to determine each wheel's power.
// Set up a variable for each drive wheel to save the power level for telemetry. // Set up a variable for each drive wheel to save the power level for telemetry.
double leftFrontPower = axial + lateral + yaw; double leftFrontPower = axial + lateral + yaw;
double rightFrontPower = axial - lateral - yaw; double rightFrontPower = axial - lateral - yaw;
double leftBackPower = axial - lateral + yaw; double leftBackPower = axial - lateral + yaw;
double rightBackPower = axial + lateral - yaw; double rightBackPower = axial + lateral - yaw;
// Normalize the values so no wheel power exceeds 100% // Normalize the values so no wheel power exceeds 100%
// This ensures that the robot maintains the desired motion. // This ensures that the robot maintains the desired motion.
@ -156,10 +156,10 @@ public class BasicOmniOpMode_Linear extends LinearOpMode {
max = Math.max(max, Math.abs(rightBackPower)); max = Math.max(max, Math.abs(rightBackPower));
if (max > 1.0) { if (max > 1.0) {
leftFrontPower /= max; leftFrontPower /= max;
rightFrontPower /= max; rightFrontPower /= max;
leftBackPower /= max; leftBackPower /= max;
rightBackPower /= max; rightBackPower /= max;
} }
// This is test code: // This is test code:
@ -186,12 +186,14 @@ public class BasicOmniOpMode_Linear extends LinearOpMode {
rightBackDrive.setPower(rightBackPower); rightBackDrive.setPower(rightBackPower);
// Show the elapsed game time and wheel power. // Show the elapsed game time and wheel power.
telemetry.addData("Status", "Run Time: " + runtime.toString()); telemetry.addData("Status", "Run Time: " + runtime);
telemetry.addData("Front left/Right", "%4.2f, %4.2f", leftFrontPower, rightFrontPower); telemetry.addData("Front left/Right", "%4.2f, %4.2f", leftFrontPower, rightFrontPower);
telemetry.addData("Back left/Right", "%4.2f, %4.2f", leftBackPower, rightBackPower); telemetry.addData("Back left/Right", "%4.2f, %4.2f", leftBackPower, rightBackPower);
telemetry.addData("Left Encoder Value", leftEncoder.getDeltaPosition()); telemetry.addData("Encoder Front Left", leftFrontDrive.getDirection() + " : " + leftFrontDrive.getCurrentPosition());
telemetry.addData("Right Encoder Value", rightEncoder.getDeltaPosition()); telemetry.addData("Encoder Front Right", rightFrontDrive.getCurrentPosition());
telemetry.addData("Strafe Encoder Value", strafeEncoder.getDeltaPosition()); telemetry.addData("Encoder Back Left", leftBackDrive.getCurrentPosition());
telemetry.addData("Encoder Back Right", rightBackDrive.getCurrentPosition());
telemetry.update(); telemetry.update();
} }
}} }
}

View File

@ -0,0 +1,247 @@
package org.firstinspires.ftc.teamcode;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.config.Config;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
/**
* This is the Circle autonomous OpMode. It runs the robot in a PathChain that's actually not quite
* a circle, but some Bezier curves that have control points set essentially in a square. However,
* it turns enough to tune your centripetal force correction and some of your heading. Some lag in
* heading is to be expected.
*
* @author Anyi Lin - 10158 Scott's Bots
* @author Aaron Yang - 10158 Scott's Bots
* @author Harrison Womack - 10158 Scott's Bots
* @version 1.0, 3/12/2024
*/
@Config
@Autonomous(name = "BluebAutoV1", group = "Autonomous Pathing Tuning")
public class BluebAutoV1 extends OpMode {
private Telemetry telemetryA;
private Follower follower;
private PathChain path;
private final Pose startPose = new Pose(7.5, 72, 90);
/**
* This initializes the Follower and creates the PathChain for the "circle". Additionally, this
* initializes the FTC Dashboard telemetry.
*/
@Override
public void init() {
follower = new Follower(hardwareMap);
follower.setMaxPower(.4);
follower.setStartingPose(startPose);
path = follower.pathBuilder()
.addPath(
// Line 1
new BezierLine(
new Point(7.5, 72, Point.CARTESIAN),
new Point(29.893, 38.250, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 2
new BezierLine(
new Point(29.893, 38.250, Point.CARTESIAN),
new Point(65.250, 32.143, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 3
new BezierLine(
new Point(65.250, 32.143, Point.CARTESIAN),
new Point(61.714, 24.429, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 4
new BezierLine(
new Point(61.714, 24.429, Point.CARTESIAN),
new Point(13.821, 22.821, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 5
new BezierLine(
new Point(13.821, 22.821, Point.CARTESIAN),
new Point(61.714, 24.429, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 6
new BezierLine(
new Point(61.714, 24.429, Point.CARTESIAN),
new Point(60.750, 12.696, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 7
new BezierLine(
new Point(60.750, 12.696, Point.CARTESIAN),
new Point(12.375, 13.179, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 8
new BezierLine(
new Point(12.375, 13.179, Point.CARTESIAN),
new Point(60.750, 12.536, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 9
new BezierLine(
new Point(60.750, 12.536, Point.CARTESIAN),
new Point(60.589, 9.321, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 10
new BezierLine(
new Point(60.589, 9.321, Point.CARTESIAN),
new Point(12.536, 8.357, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 11
new BezierLine(
new Point(12.536, 8.357, Point.CARTESIAN),
new Point(26.679, 8.679, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 12
new BezierLine(
new Point(26.679, 8.679, Point.CARTESIAN),
new Point(22.821, 109.446, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 13
new BezierLine(
new Point(22.821, 109.446, Point.CARTESIAN),
new Point(70.714, 109.446, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 14
new BezierLine(
new Point(70.714, 109.446, Point.CARTESIAN),
new Point(71.036, 120.214, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 15
new BezierLine(
new Point(71.036, 120.214, Point.CARTESIAN),
new Point(22.179, 120.214, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 16
new BezierLine(
new Point(22.179, 120.214, Point.CARTESIAN),
new Point(11.089, 130.821, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 17
new BezierLine(
new Point(11.089, 130.821, Point.CARTESIAN),
new Point(70.714, 112.018, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 18
new BezierLine(
new Point(70.714, 112.018, Point.CARTESIAN),
new Point(70.714, 128.250, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 19
new BezierLine(
new Point(70.714, 128.250, Point.CARTESIAN),
new Point(9.964, 130.018, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 20
new BezierLine(
new Point(9.964, 130.018, Point.CARTESIAN),
new Point(70.554, 130.500, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 21
new BezierLine(
new Point(70.554, 130.500, Point.CARTESIAN),
new Point(70.393, 135.000, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90))
.addPath(
// Line 22
new BezierLine(
new Point(70.393, 135.000, Point.CARTESIAN),
new Point(13.821, 134.839, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(90)).build();
follower.followPath(path);
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
telemetryA.update();
}
/**
* This runs the OpMode, updating the Follower as well as printing out the debug statements to
* the Telemetry, as well as the FTC Dashboard.
*/
@Override
public void loop() {
follower.update();
if (follower.atParametricEnd()) {
follower.followPath(path);
}
follower.telemetryDebug(telemetryA);
}
}

View File

@ -0,0 +1,4 @@
package org.firstinspires.ftc.teamcode;
public class BluenbAutov1 {
}

View File

@ -1,24 +0,0 @@
package org.firstinspires.ftc.teamcode;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import org.firstinspires.ftc.teamcode.cometbots.CometBotAutoDevelopment;
@TeleOp(name = "CometBot Auto", group = "Development")
public class CometBotDevAuto extends OpMode {
public CometBotAutoDevelopment runMode;
@Override
public void init() {
this.runMode = new CometBotAutoDevelopment(hardwareMap, telemetry, gamepad1, gamepad2);
this.runMode.init();
}
@Override
public void loop() {
this.runMode.update();
telemetry.update();
}
}

View File

@ -1,64 +0,0 @@
package org.firstinspires.ftc.teamcode;
import com.acmerobotics.roadrunner.Action;
import com.acmerobotics.roadrunner.SleepAction;
import com.acmerobotics.roadrunner.ftc.Actions;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.subsystem.AutoLine1;
import org.firstinspires.ftc.teamcode.subsystem.AutoLine2;
import org.firstinspires.ftc.teamcode.subsystem.AutoLine3;
@Autonomous(name = "BlueNetAuto", group = "Dev")
public class NetAuto extends OpMode {
public Follower follower;
public AutoLine1 myFirstPath = new AutoLine1();
public AutoLine2 mySecondPath = new AutoLine2();
public int pathState = 0;
@Override
public void init() {
follower = new Follower(hardwareMap);
follower.setMaxPower(0.65);
myFirstPath.moveToAutoLine1(follower);
}
@Override
public void loop() {
follower.update();
switch(pathState) {
case 0:
if (!follower.isBusy()) {
pathState = 1;
mySecondPath.moveToAutoLine2(follower);
}
case 1:
if (!follower.isBusy()) {
System.out.println("Finished");
}
}
// switch(pathState) {
// case 0:
// if (!follower.isBusy()) {
// mySecondPath.moveToAutoLine2(follower);
// pathState = 1;
// }
// case 1:
// if (!follower.isBusy()) {
// pathState = 2;
// }
// case 2:
// // set path 3
// // as if busy, if not, set path 4 and so on.
// System.out.print("we're at the end");
//
// }
follower.telemetryDebug(telemetry);
}
}

View File

@ -12,71 +12,46 @@ public class PedroConstants {
*/ */
// Robot motor configurations // Robot motor configurations
public static final String FRONT_LEFT_MOTOR = "front-left"; public static final String FRONT_LEFT_MOTOR = "Drive front lt";
public static final String BACK_LEFT_MOTOR = "back-left"; public static final String BACK_LEFT_MOTOR = "Drive back lt";
public static final String FRONT_RIGHT_MOTOR = "front-right"; public static final String FRONT_RIGHT_MOTOR = "Drive front rt";
public static final String BACK_RIGHT_MOTOR = "back-right"; public static final String BACK_RIGHT_MOTOR = "Drive back rt";
// Robot motor direction // Robot motor direction
public static final Direction FRONT_LEFT_MOTOR_DIRECTION = Direction.REVERSE; public static final Direction FRONT_LEFT_MOTOR_DIRECTION = Direction.REVERSE;
public static final Direction BACK_LEFT_MOTOR_DIRECTION = Direction.REVERSE; public static final Direction BACK_LEFT_MOTOR_DIRECTION = Direction.REVERSE;
public static final Direction FRONT_RIGHT_MOTOR_DIRECTION = Direction.FORWARD; public static final Direction FRONT_RIGHT_MOTOR_DIRECTION = Direction.REVERSE;
public static final Direction BACK_RIGHT_MOTOR_DIRECTION = Direction.FORWARD; public static final Direction BACK_RIGHT_MOTOR_DIRECTION = Direction.REVERSE;
/*
Motor Max Power
*/
public static final double MAX_POWER = .75;
// Robot IMU configuration
public static final String IMU = "imu";
// Robot IMU placement
public static final RevHubOrientationOnRobot.LogoFacingDirection IMU_LOGO_FACING_DIRECTION
= RevHubOrientationOnRobot.LogoFacingDirection.LEFT;
public static final RevHubOrientationOnRobot.UsbFacingDirection IMU_USB_FACING_DIRECTION
= RevHubOrientationOnRobot.UsbFacingDirection.UP;
// Robot encoders
// NOTE: Encoders are plugged into the same ports as motors hence the weird names
public static final String RIGHT_ENCODER = "front-left"; //2
public static final String BACK_ENCODER = "front-right"; //1
public static final String LEFT_ENCODER = "back-right"; //0
// Robot encoder direction // Robot encoder direction
public static final double LEFT_ENCODER_DIRECTION = Encoder.FORWARD; public static final double FRONT_LEFT_MOTOR_ENCODER = Encoder.FORWARD;
public static final double RIGHT_ENCODER_DIRECTION = Encoder.REVERSE; public static final double BACK_LEFT_MOTOR_ENCODER = Encoder.FORWARD;
public static final double BACK_ENCODER_DIRECTION = Encoder.FORWARD; public static final double FRONT_RIGHT_MOTOR_ENCODER = Encoder.FORWARD;
public static final double BACK_RIGHT_MOTOR_ENCODER = Encoder.FORWARD;
// Arm config
public static final String SLIDE_MOTOR = "SlideMotor";
public static final String Claw_Servo = "ClawServo";
public static final String Wrist_Servo = "WristServo";
public static final String Arm_Servo = "ArmServo";
/* /*
Pedro's parameters Pedro's parameters
*/ */
// The weight of the robot in Kilograms // The weight of the robot in Kilograms
public static final double ROBOT_WEIGHT_IN_KG = 9; public static final double ROBOT_WEIGHT_IN_KG = 5.15;
// Maximum velocity of the robot going forward // Maximum velocity of the robot going forward
public static final double ROBOT_SPEED_FORWARD = 51.5; public static final double ROBOT_SPEED_FORWARD = 66.6117;
// Maximum velocity of the robot going right // Maximum velocity of the robot going right
public static final double ROBOT_SPEED_LATERAL = 28.7; public static final double ROBOT_SPEED_LATERAL = 60.0671;
// Rate of deceleration when power is cut-off when the robot is moving forward // Rate of deceleration when power is cut-off when the robot is moving forward
public static final double FORWARD_ZERO_POWER_ACCEL = -59.8; public static final double FORWARD_ZERO_POWER_ACCEL = -71.154;
// Rate of deceleration when power is cut-off when the robot is moving to the right // Rate of deceleration when power is cut-off when the robot is moving to the right
public static final double LATERAL_ZERO_POWER_ACCEL = -99.7; public static final double LATERAL_ZERO_POWER_ACCEL = -109.5358;
// Determines how fast your robot will decelerate as a factor of how fast your robot will coast to a stop // Determines how fast your robot will decelerate as a factor of how fast your robot will coast to a stop
public static final double ZERO_POWER_ACCEL_MULT = 3.5; public static final double ZERO_POWER_ACCEL_MULT = 4.0;
/* Centripetal force correction - increase if robot is correcting into the path /* Centripetal force correction - increase if robot is correcting into the path
- decrease if robot is correcting away from the path */ - decrease if robot is correcting away from the path */
public static final double CENTRIPETAL_SCALING = 0.0004; public static final double CENTRIPETAL_SCALING = 0.0005;
} }

View File

@ -1,122 +0,0 @@
package org.firstinspires.ftc.teamcode;
import com.acmerobotics.dashboard.FtcDashboard;
import com.acmerobotics.dashboard.telemetry.MultipleTelemetry;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.OpMode;
import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
@Autonomous(name = "Pre Loaded Blue Basket Auto", group = "Competition")
public class PreLoadedBlueBasketAuto extends OpMode {
private Telemetry telemetryA;
private Follower follower;
private PathChain path;
private final Pose startPose = new Pose(7.875, 89.357);
@Override
public void init() {
follower = new Follower(hardwareMap);
follower.setMaxPower(.45);
follower.setStartingPose(startPose);
path = follower.pathBuilder()
.addPath(
// Line 1
new BezierLine(
new Point(8.036, 89.196, Point.CARTESIAN),
new Point(10.125, 126.804, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 2
new BezierCurve(
new Point(10.125, 126.804, Point.CARTESIAN),
new Point(37.607, 90.000, Point.CARTESIAN),
new Point(62.357, 119.893, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 3
new BezierCurve(
new Point(62.357, 119.893, Point.CARTESIAN),
new Point(33.750, 112.500, Point.CARTESIAN),
new Point(15.107, 130.661, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 4
new BezierCurve(
new Point(15.107, 130.661, Point.CARTESIAN),
new Point(58.821, 103.018, Point.CARTESIAN),
new Point(59.625, 126.964, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 5
new BezierLine(
new Point(59.625, 126.964, Point.CARTESIAN),
new Point(15.107, 130.339, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 6
new BezierLine(
new Point(15.107, 130.339, Point.CARTESIAN),
new Point(59.625, 126.964, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 7
new BezierLine(
new Point(59.625, 126.964, Point.CARTESIAN),
new Point(57.857, 133.071, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 8
new BezierLine(
new Point(57.857, 133.071, Point.CARTESIAN),
new Point(18.964, 134.679, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 9
new BezierCurve(
new Point(18.964, 134.679, Point.CARTESIAN),
new Point(84.536, 131.786, Point.CARTESIAN),
new Point(80.036, 96.429, Point.CARTESIAN)
)
)
.setLinearHeadingInterpolation(Math.toRadians(0), Math.toRadians(270)).build();
follower.followPath(path);
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
telemetryA.update();
}
@Override
public void loop() {
follower.update();
follower.telemetryDebug(telemetryA);
}
}

View File

@ -1,142 +0,0 @@
package org.firstinspires.ftc.teamcode.cometbots;
import static org.firstinspires.ftc.teamcode.PedroConstants.MAX_POWER;
import androidx.annotation.NonNull;
import com.acmerobotics.dashboard.telemetry.TelemetryPacket;
import com.acmerobotics.roadrunner.Action;
import com.acmerobotics.roadrunner.SequentialAction;
import com.acmerobotics.roadrunner.SleepAction;
import com.acmerobotics.roadrunner.ftc.Actions;
import com.qualcomm.robotcore.hardware.Gamepad;
import com.qualcomm.robotcore.hardware.HardwareMap;
import org.firstinspires.ftc.robotcore.external.Telemetry;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.states.FieldStates;
import org.firstinspires.ftc.teamcode.subsystem.MotorsSubsystem;
public class CometBotAutoDevelopment {
/*
Subsystems
*/
private MotorsSubsystem motors;
/*
Controllers
*/
public Gamepad GP1;
public Gamepad GP2;
public Gamepad currentGP1;
public Gamepad previousGP1;
public Gamepad currentGP2;
public Gamepad previousGP2;
private Telemetry telemetry;
public FieldStates fieldStates;
private boolean centricity = false;
private Follower follower;
private HardwareMap hardwareMap;
public CometBotAutoDevelopment(HardwareMap hardwareMap, Telemetry telemetry, Gamepad gp1, Gamepad gp2) {
this.motors = new MotorsSubsystem(hardwareMap, telemetry);
this.GP1 = gp1;
this.GP2 = gp2;
this.hardwareMap = hardwareMap;
this.telemetry = telemetry;
this.currentGP1 = new Gamepad();
this.currentGP2 = new Gamepad();
this.previousGP1 = new Gamepad();
this.previousGP2 = new Gamepad();
this.fieldStates = new FieldStates();
this.follower = new Follower(hardwareMap);
}
public class ZeroOutPower implements Action {
@Override
public boolean run(@NonNull TelemetryPacket telemetryPacket) {
follower = new Follower(hardwareMap);
follower.setMaxPower(0);
System.out.println("Running ZeroOutPower");
return follower.isBusy();
}
}
public class ReturnToMaxPower implements Action {
@Override
public boolean run(@NonNull TelemetryPacket telemetryPacket) {
follower = new Follower(hardwareMap);
follower.setMaxPower(MAX_POWER);
follower.startTeleopDrive();
System.out.println("Running ReturnToMaxPower");
return follower.isBusy();
}
}
public Action zeroOutPower() {
return new ZeroOutPower();
}
public Action returnToMaxPower() {
return new ReturnToMaxPower();
}
public void init() {
this.motors.init();
this.fieldStates.setFieldLocation(FieldStates.FieldLocation.TRAVELING);
follower.setMaxPower(MAX_POWER);
follower.startTeleopDrive();
}
public void update() {
this.previousGP1.copy(currentGP1);
this.currentGP1.copy(this.GP1);
this.previousGP2.copy(currentGP2);
this.currentGP2.copy(this.GP2);
this.toFixMotorBlockingIssueFirstMethod();
this.toFixMotorBlockingIssueSecondMethod();
this.changeCentricity();
follower.setTeleOpMovementVectors(-this.GP1.left_stick_y, -this.GP1.left_stick_x, -this.GP1.right_stick_x, centricity);
follower.update();
this.telemetry.addData("Field State", this.fieldStates.getFieldLocation());
}
public void changeCentricity() {
if (this.currentGP1.left_bumper && !this.previousGP1.left_bumper) {
this.centricity = !centricity;
this.follower.breakFollowing();
this.follower.startTeleopDrive();
}
}
public void toFixMotorBlockingIssueFirstMethod() {
if (this.currentGP1.cross && !this.previousGP1.cross) {
fieldStates.setFieldLocation(FieldStates.FieldLocation.BUCKET);
Actions.runBlocking(new SequentialAction(
this.zeroOutPower(),
new SleepAction(3),
this.returnToMaxPower()
));
fieldStates.setFieldLocation(FieldStates.FieldLocation.TRAVELING);
}
}
public void toFixMotorBlockingIssueSecondMethod() {
if (this.currentGP1.circle && !this.previousGP1.circle) {
this.follower.breakFollowing();
fieldStates.setFieldLocation(FieldStates.FieldLocation.BUCKET);
Actions.runBlocking(new SequentialAction(
new SleepAction(3)
));
fieldStates.setFieldLocation(FieldStates.FieldLocation.TRAVELING);
this.follower.startTeleopDrive();
}
}
}

View File

@ -5,9 +5,7 @@ import com.qualcomm.robotcore.hardware.HardwareMap;
import com.qualcomm.robotcore.hardware.IMU; import com.qualcomm.robotcore.hardware.IMU;
import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit; import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers.ThreeWheelIMULocalizer; import org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers.DriveEncoderLocalizer;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers.ThreeWheelLocalizer;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers.TwoWheelLocalizer;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.MathFunctions; import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.MathFunctions;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Vector; import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Vector;
@ -69,7 +67,7 @@ public class PoseUpdater {
*/ */
public PoseUpdater(HardwareMap hardwareMap) { public PoseUpdater(HardwareMap hardwareMap) {
// TODO: replace the second argument with your preferred localizer // TODO: replace the second argument with your preferred localizer
this(hardwareMap, new ThreeWheelLocalizer(hardwareMap)); this(hardwareMap, new DriveEncoderLocalizer(hardwareMap));
} }
/** /**

View File

@ -1,11 +1,20 @@
package org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers; package org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers;
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.leftFrontMotorName; import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.leftRearMotorName; import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.rightFrontMotorName; import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR_ENCODER;
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.rightRearMotorName; import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR_ENCODER;
import com.acmerobotics.dashboard.config.Config; import com.acmerobotics.dashboard.config.Config;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.DcMotorEx; import com.qualcomm.robotcore.hardware.DcMotorEx;
import com.qualcomm.robotcore.hardware.HardwareMap; import com.qualcomm.robotcore.hardware.HardwareMap;
@ -26,21 +35,21 @@ import org.firstinspires.ftc.teamcode.pedroPathing.util.NanoTimer;
*/ */
@Config @Config
public class DriveEncoderLocalizer extends Localizer { public class DriveEncoderLocalizer extends Localizer {
private HardwareMap hardwareMap; private final HardwareMap hardwareMap;
private Pose startPose; private Pose startPose;
private Pose displacementPose; private Pose displacementPose;
private Pose currentVelocity; private Pose currentVelocity;
private Matrix prevRotationMatrix; private Matrix prevRotationMatrix;
private NanoTimer timer; private final NanoTimer timer;
private long deltaTimeNano; private long deltaTimeNano;
private Encoder leftFront; private final Encoder leftFront;
private Encoder rightFront; private final Encoder rightFront;
private Encoder leftRear; private final Encoder leftRear;
private Encoder rightRear; private final Encoder rightRear;
private double totalHeading; private double totalHeading;
public static double FORWARD_TICKS_TO_INCHES = 1; public static double FORWARD_TICKS_TO_INCHES = -0.0058;
public static double STRAFE_TICKS_TO_INCHES = 1; public static double STRAFE_TICKS_TO_INCHES = -0.0054;
public static double TURN_TICKS_TO_RADIANS = 1; public static double TURN_TICKS_TO_RADIANS = -0.0009;
public static double ROBOT_WIDTH = 1; public static double ROBOT_WIDTH = 1;
public static double ROBOT_LENGTH = 1; public static double ROBOT_LENGTH = 1;
@ -58,22 +67,32 @@ public class DriveEncoderLocalizer extends Localizer {
* This creates a new DriveEncoderLocalizer from a HardwareMap and a Pose, with the Pose * This creates a new DriveEncoderLocalizer from a HardwareMap and a Pose, with the Pose
* specifying the starting pose of the localizer. * specifying the starting pose of the localizer.
* *
* @param map the HardwareMap * @param map the HardwareMap
* @param setStartPose the Pose to start from * @param setStartPose the Pose to start from
*/ */
public DriveEncoderLocalizer(HardwareMap map, Pose setStartPose) { public DriveEncoderLocalizer(HardwareMap map, Pose setStartPose) {
hardwareMap = map; hardwareMap = map;
leftFront = new Encoder(hardwareMap.get(DcMotorEx.class, leftFrontMotorName)); leftFront = new Encoder(hardwareMap.get(DcMotorEx.class, FRONT_LEFT_MOTOR));
leftRear = new Encoder(hardwareMap.get(DcMotorEx.class, leftRearMotorName)); leftRear = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_LEFT_MOTOR));
rightRear = new Encoder(hardwareMap.get(DcMotorEx.class, rightRearMotorName)); rightRear = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_RIGHT_MOTOR));
rightFront = new Encoder(hardwareMap.get(DcMotorEx.class, rightFrontMotorName)); rightFront = new Encoder(hardwareMap.get(DcMotorEx.class, FRONT_RIGHT_MOTOR));
DcMotor leftFrontDrive = hardwareMap.get(DcMotor.class, FRONT_LEFT_MOTOR);
DcMotor leftBackDrive = hardwareMap.get(DcMotor.class, BACK_LEFT_MOTOR);
DcMotor rightFrontDrive = hardwareMap.get(DcMotor.class, FRONT_RIGHT_MOTOR);
DcMotor rightBackDrive = hardwareMap.get(DcMotor.class, BACK_RIGHT_MOTOR);
leftFrontDrive.setDirection(FRONT_LEFT_MOTOR_DIRECTION);
leftBackDrive.setDirection(BACK_LEFT_MOTOR_DIRECTION);
rightFrontDrive.setDirection(FRONT_RIGHT_MOTOR_DIRECTION);
rightBackDrive.setDirection(BACK_RIGHT_MOTOR_DIRECTION);
// TODO: reverse any encoders necessary // TODO: reverse any encoders necessary
leftFront.setDirection(Encoder.REVERSE); leftFront.setDirection(FRONT_LEFT_MOTOR_ENCODER);
rightRear.setDirection(Encoder.REVERSE); rightFront.setDirection(FRONT_RIGHT_MOTOR_ENCODER);
leftRear.setDirection(Encoder.FORWARD); leftRear.setDirection(BACK_LEFT_MOTOR_ENCODER);
rightRear.setDirection(Encoder.FORWARD); rightRear.setDirection(BACK_RIGHT_MOTOR_ENCODER);
setStartPose(setStartPose); setStartPose(setStartPose);
timer = new NanoTimer(); timer = new NanoTimer();
@ -129,7 +148,7 @@ public class DriveEncoderLocalizer extends Localizer {
* @param heading the rotation of the Matrix * @param heading the rotation of the Matrix
*/ */
public void setPrevRotationMatrix(double heading) { public void setPrevRotationMatrix(double heading) {
prevRotationMatrix = new Matrix(3,3); prevRotationMatrix = new Matrix(3, 3);
prevRotationMatrix.set(0, 0, Math.cos(heading)); prevRotationMatrix.set(0, 0, Math.cos(heading));
prevRotationMatrix.set(0, 1, -Math.sin(heading)); prevRotationMatrix.set(0, 1, -Math.sin(heading));
prevRotationMatrix.set(1, 0, Math.sin(heading)); prevRotationMatrix.set(1, 0, Math.sin(heading));
@ -164,7 +183,7 @@ public class DriveEncoderLocalizer extends Localizer {
Matrix globalDeltas; Matrix globalDeltas;
setPrevRotationMatrix(getPose().getHeading()); setPrevRotationMatrix(getPose().getHeading());
Matrix transformation = new Matrix(3,3); Matrix transformation = new Matrix(3, 3);
if (Math.abs(robotDeltas.get(2, 0)) < 0.001) { if (Math.abs(robotDeltas.get(2, 0)) < 0.001) {
transformation.set(0, 0, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0)); transformation.set(0, 0, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
transformation.set(0, 1, -robotDeltas.get(2, 0) / 2.0); transformation.set(0, 1, -robotDeltas.get(2, 0) / 2.0);
@ -214,13 +233,13 @@ public class DriveEncoderLocalizer extends Localizer {
* @return returns a Matrix containing the robot relative movement. * @return returns a Matrix containing the robot relative movement.
*/ */
public Matrix getRobotDeltas() { public Matrix getRobotDeltas() {
Matrix returnMatrix = new Matrix(3,1); Matrix returnMatrix = new Matrix(3, 1);
// x/forward movement // x/forward movement
returnMatrix.set(0,0, FORWARD_TICKS_TO_INCHES * (leftFront.getDeltaPosition() + rightFront.getDeltaPosition() + leftRear.getDeltaPosition() + rightRear.getDeltaPosition())); returnMatrix.set(0, 0, FORWARD_TICKS_TO_INCHES * (leftFront.getDeltaPosition() + rightFront.getDeltaPosition() + leftRear.getDeltaPosition() + rightRear.getDeltaPosition()));
//y/strafe movement //y/strafe movement
returnMatrix.set(1,0, STRAFE_TICKS_TO_INCHES * (-leftFront.getDeltaPosition() + rightFront.getDeltaPosition() + leftRear.getDeltaPosition() - rightRear.getDeltaPosition())); returnMatrix.set(1, 0, STRAFE_TICKS_TO_INCHES * (-leftFront.getDeltaPosition() + rightFront.getDeltaPosition() + leftRear.getDeltaPosition() - rightRear.getDeltaPosition()));
// theta/turning // theta/turning
returnMatrix.set(2,0, TURN_TICKS_TO_RADIANS * ((-leftFront.getDeltaPosition() + rightFront.getDeltaPosition() - leftRear.getDeltaPosition() + rightRear.getDeltaPosition()) / (ROBOT_WIDTH + ROBOT_LENGTH))); returnMatrix.set(2, 0, TURN_TICKS_TO_RADIANS * ((-leftFront.getDeltaPosition() + rightFront.getDeltaPosition() - leftRear.getDeltaPosition() + rightRear.getDeltaPosition()) / (ROBOT_WIDTH + ROBOT_LENGTH)));
return returnMatrix; return returnMatrix;
} }

View File

@ -1,317 +0,0 @@
package org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers;
import static org.firstinspires.ftc.teamcode.PedroConstants.*;
import com.acmerobotics.dashboard.config.Config;
import com.qualcomm.hardware.rev.RevHubOrientationOnRobot;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import com.qualcomm.robotcore.hardware.HardwareMap;
import com.qualcomm.robotcore.hardware.IMU;
import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Encoder;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Localizer;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Matrix;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.MathFunctions;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Vector;
import org.firstinspires.ftc.teamcode.pedroPathing.util.NanoTimer;
/**
* This is the ThreeWheelIMULocalizer class. This class extends the Localizer superclass and is a
* localizer that uses the three wheel odometry set up with the IMU to have more accurate heading
* readings. The diagram below, which is modified from Road Runner, shows a typical set up.
*
* The view is from the top of the robot looking downwards.
*
* left on robot is the y positive direction
*
* forward on robot is the x positive direction
*
* /--------------\
* | ____ |
* | ---- |
* | || || |
* | || || | ----> left (y positive)
* | |
* | |
* \--------------/
* |
* |
* V
* forward (x positive)
*
* @author Logan Nash
* @author Anyi Lin - 10158 Scott's Bots
* @version 1.0, 7/9/2024
*/
@Config
public class ThreeWheelIMULocalizer extends Localizer {
private HardwareMap hardwareMap;
private Pose startPose;
private Pose displacementPose;
private Pose currentVelocity;
private Matrix prevRotationMatrix;
private NanoTimer timer;
private long deltaTimeNano;
private Encoder leftEncoder;
private Encoder rightEncoder;
private Encoder strafeEncoder;
private Pose leftEncoderPose;
private Pose rightEncoderPose;
private Pose strafeEncoderPose;
public final IMU imu;
private double previousIMUOrientation;
private double deltaRadians;
private double totalHeading;
public static double FORWARD_TICKS_TO_INCHES = 0.0029;//8192 * 1.37795 * 2 * Math.PI * 0.5008239963;
public static double STRAFE_TICKS_TO_INCHES = 0.0029;//8192 * 1.37795 * 2 * Math.PI * 0.5018874659;
public static double TURN_TICKS_TO_RADIANS = 0.0022;//8192 * 1.37795 * 2 * Math.PI * 0.5;
public static boolean useIMU = true;
/**
* This creates a new ThreeWheelIMULocalizer from a HardwareMap, with a starting Pose at (0,0)
* facing 0 heading.
*
* @param map the HardwareMap
*/
public ThreeWheelIMULocalizer(HardwareMap map) {
this(map, new Pose());
}
/**
* This creates a new ThreeWheelIMULocalizer from a HardwareMap and a Pose, with the Pose
* specifying the starting pose of the localizer.
*
* @param map the HardwareMap
* @param setStartPose the Pose to start from
*/
public ThreeWheelIMULocalizer(HardwareMap map, Pose setStartPose) {
hardwareMap = map;
imu = hardwareMap.get(IMU.class, IMU);
// TODO: replace this with your IMU's orientation
imu.initialize(new IMU.Parameters(new RevHubOrientationOnRobot(IMU_LOGO_FACING_DIRECTION, IMU_USB_FACING_DIRECTION)));
// TODO: replace these with your encoder positions
leftEncoderPose = new Pose(0, 6.19375, 0);
rightEncoderPose = new Pose(0, -6.19375, 0);
strafeEncoderPose = new Pose(-7, 0, Math.toRadians(90));
// TODO: replace these with your encoder ports
leftEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, LEFT_ENCODER));
rightEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, RIGHT_ENCODER));
strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_ENCODER));
// TODO: reverse any encoders necessary
leftEncoder.setDirection(LEFT_ENCODER_DIRECTION);
rightEncoder.setDirection(RIGHT_ENCODER_DIRECTION);
strafeEncoder.setDirection(BACK_ENCODER_DIRECTION);
setStartPose(setStartPose);
timer = new NanoTimer();
deltaTimeNano = 1;
displacementPose = new Pose();
currentVelocity = new Pose();
totalHeading = 0;
resetEncoders();
}
/**
* This returns the current pose estimate.
*
* @return returns the current pose estimate as a Pose
*/
@Override
public Pose getPose() {
return MathFunctions.addPoses(startPose, displacementPose);
}
/**
* This returns the current velocity estimate.
*
* @return returns the current velocity estimate as a Pose
*/
@Override
public Pose getVelocity() {
return currentVelocity.copy();
}
/**
* This returns the current velocity estimate.
*
* @return returns the current velocity estimate as a Vector
*/
@Override
public Vector getVelocityVector() {
return currentVelocity.getVector();
}
/**
* This sets the start pose. Changing the start pose should move the robot as if all its
* previous movements were displacing it from its new start pose.
*
* @param setStart the new start pose
*/
@Override
public void setStartPose(Pose setStart) {
startPose = setStart;
}
/**
* This sets the Matrix that contains the previous pose's heading rotation.
*
* @param heading the rotation of the Matrix
*/
public void setPrevRotationMatrix(double heading) {
prevRotationMatrix = new Matrix(3,3);
prevRotationMatrix.set(0, 0, Math.cos(heading));
prevRotationMatrix.set(0, 1, -Math.sin(heading));
prevRotationMatrix.set(1, 0, Math.sin(heading));
prevRotationMatrix.set(1, 1, Math.cos(heading));
prevRotationMatrix.set(2, 2, 1.0);
}
/**
* This sets the current pose estimate. Changing this should just change the robot's current
* pose estimate, not anything to do with the start pose.
*
* @param setPose the new current pose estimate
*/
@Override
public void setPose(Pose setPose) {
displacementPose = MathFunctions.subtractPoses(setPose, startPose);
resetEncoders();
}
/**
* This updates the elapsed time timer that keeps track of time between updates, as well as the
* change position of the Encoders. Then, the robot's global change in position is calculated
* using the pose exponential method.
*/
@Override
public void update() {
deltaTimeNano = timer.getElapsedTime();
timer.resetTimer();
updateEncoders();
Matrix robotDeltas = getRobotDeltas();
Matrix globalDeltas;
setPrevRotationMatrix(getPose().getHeading());
Matrix transformation = new Matrix(3,3);
if (Math.abs(robotDeltas.get(2, 0)) < 0.001) {
transformation.set(0, 0, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
transformation.set(0, 1, -robotDeltas.get(2, 0) / 2.0);
transformation.set(1, 0, robotDeltas.get(2, 0) / 2.0);
transformation.set(1, 1, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
transformation.set(2, 2, 1.0);
} else {
transformation.set(0, 0, Math.sin(robotDeltas.get(2, 0)) / robotDeltas.get(2, 0));
transformation.set(0, 1, (Math.cos(robotDeltas.get(2, 0)) - 1.0) / robotDeltas.get(2, 0));
transformation.set(1, 0, (1.0 - Math.cos(robotDeltas.get(2, 0))) / robotDeltas.get(2, 0));
transformation.set(1, 1, Math.sin(robotDeltas.get(2, 0)) / robotDeltas.get(2, 0));
transformation.set(2, 2, 1.0);
}
globalDeltas = Matrix.multiply(Matrix.multiply(prevRotationMatrix, transformation), robotDeltas);
displacementPose.add(new Pose(globalDeltas.get(0, 0), globalDeltas.get(1, 0), globalDeltas.get(2, 0)));
currentVelocity = new Pose(globalDeltas.get(0, 0) / (deltaTimeNano * Math.pow(10.0, 9)), globalDeltas.get(1, 0) / (deltaTimeNano * Math.pow(10.0, 9)), globalDeltas.get(2, 0) / (deltaTimeNano * Math.pow(10.0, 9)));
totalHeading += globalDeltas.get(2, 0);
}
/**
* This updates the Encoders.
*/
public void updateEncoders() {
leftEncoder.update();
rightEncoder.update();
strafeEncoder.update();
double currentIMUOrientation = MathFunctions.normalizeAngle(imu.getRobotYawPitchRollAngles().getYaw(AngleUnit.RADIANS));
deltaRadians = MathFunctions.getTurnDirection(previousIMUOrientation, currentIMUOrientation) * MathFunctions.getSmallestAngleDifference(currentIMUOrientation, previousIMUOrientation);
previousIMUOrientation = currentIMUOrientation;
}
/**
* This resets the Encoders.
*/
public void resetEncoders() {
leftEncoder.reset();
rightEncoder.reset();
strafeEncoder.reset();
}
/**
* This calculates the change in position from the perspective of the robot using information
* from the Encoders.
*
* @return returns a Matrix containing the robot relative movement.
*/
public Matrix getRobotDeltas() {
Matrix returnMatrix = new Matrix(3,1);
// x/forward movement
returnMatrix.set(0,0, FORWARD_TICKS_TO_INCHES * ((rightEncoder.getDeltaPosition() * leftEncoderPose.getY() - leftEncoder.getDeltaPosition() * rightEncoderPose.getY()) / (leftEncoderPose.getY() - rightEncoderPose.getY())));
//y/strafe movement
returnMatrix.set(1,0, STRAFE_TICKS_TO_INCHES * (strafeEncoder.getDeltaPosition() - strafeEncoderPose.getX() * ((rightEncoder.getDeltaPosition() - leftEncoder.getDeltaPosition()) / (leftEncoderPose.getY() - rightEncoderPose.getY()))));
// theta/turning
if (MathFunctions.getSmallestAngleDifference(0, deltaRadians) > 0.00005 && useIMU) {
returnMatrix.set(2, 0, deltaRadians);
} else {
returnMatrix.set(2,0, TURN_TICKS_TO_RADIANS * ((rightEncoder.getDeltaPosition() - leftEncoder.getDeltaPosition()) / (leftEncoderPose.getY() - rightEncoderPose.getY())));
}
return returnMatrix;
}
/**
* This returns how far the robot has turned in radians, in a number not clamped between 0 and
* 2 * pi radians. This is used for some tuning things and nothing actually within the following.
*
* @return returns how far the robot has turned in total, in radians.
*/
public double getTotalHeading() {
return totalHeading;
}
/**
* This returns the multiplier applied to forward movement measurement to convert from encoder
* ticks to inches. This is found empirically through a tuner.
*
* @return returns the forward ticks to inches multiplier
*/
public double getForwardMultiplier() {
return FORWARD_TICKS_TO_INCHES;
}
/**
* This returns the multiplier applied to lateral/strafe movement measurement to convert from
* encoder ticks to inches. This is found empirically through a tuner.
*
* @return returns the lateral/strafe ticks to inches multiplier
*/
public double getLateralMultiplier() {
return STRAFE_TICKS_TO_INCHES;
}
/**
* This returns the multiplier applied to turning movement measurement to convert from encoder
* ticks to radians. This is found empirically through a tuner.
*
* @return returns the turning ticks to radians multiplier
*/
public double getTurningMultiplier() {
return TURN_TICKS_TO_RADIANS;
}
/**
* This resets the IMU.
*/
public void resetIMU() {
imu.resetYaw();
}
}

View File

@ -1,294 +0,0 @@
package org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers;
import static org.firstinspires.ftc.teamcode.PedroConstants.*;
import com.acmerobotics.dashboard.config.Config;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import com.qualcomm.robotcore.hardware.HardwareMap;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Encoder;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Localizer;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Matrix;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.MathFunctions;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Vector;
import org.firstinspires.ftc.teamcode.pedroPathing.util.NanoTimer;
/**
* This is the ThreeWheelLocalizer class. This class extends the Localizer superclass and is a
* localizer that uses the three wheel odometry set up. The diagram below, which is modified from
* Road Runner, shows a typical set up.
*
* The view is from the top of the robot looking downwards.
*
* left on robot is the y positive direction
*
* forward on robot is the x positive direction
*
* /--------------\
* | ____ |
* | ---- |
* | || || |
* | || || | ----> left (y positive)
* | |
* | |
* \--------------/
* |
* |
* V
* forward (x positive)
*
* @author Anyi Lin - 10158 Scott's Bots
* @version 1.0, 4/2/2024
*/
@Config
public class ThreeWheelLocalizer extends Localizer {
private HardwareMap hardwareMap;
private Pose startPose;
private Pose displacementPose;
private Pose currentVelocity;
private Matrix prevRotationMatrix;
private NanoTimer timer;
private long deltaTimeNano;
private Encoder leftEncoder;
private Encoder rightEncoder;
private Encoder strafeEncoder;
private Pose leftEncoderPose;
private Pose rightEncoderPose;
private Pose strafeEncoderPose;
private double totalHeading;
public static double FORWARD_TICKS_TO_INCHES = 0.0029;//8192 * 1.37795 * 2 * Math.PI * 0.5008239963;
public static double STRAFE_TICKS_TO_INCHES = 0.0029;//8192 * 1.37795 * 2 * Math.PI * 0.5018874659;
public static double TURN_TICKS_TO_RADIANS = 0.003;//8192 * 1.37795 * 2 * Math.PI * 0.5;
/**
* This creates a new ThreeWheelLocalizer from a HardwareMap, with a starting Pose at (0,0)
* facing 0 heading.
*
* @param map the HardwareMap
*/
public ThreeWheelLocalizer(HardwareMap map) {
this(map, new Pose());
}
/**
* This creates a new ThreeWheelLocalizer from a HardwareMap and a Pose, with the Pose
* specifying the starting pose of the localizer.
*
* @param map the HardwareMap
* @param setStartPose the Pose to start from
*/
public ThreeWheelLocalizer(HardwareMap map, Pose setStartPose) {
// TODO: replace these with your encoder positions
leftEncoderPose = new Pose(0, 6.25, 0);
rightEncoderPose = new Pose(0, -6.25, 0);
strafeEncoderPose = new Pose(-7, 0, Math.toRadians(90));
hardwareMap = map;
// TODO: replace these with your encoder ports
leftEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, LEFT_ENCODER));
rightEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, RIGHT_ENCODER));
strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_ENCODER));
// TODO: reverse any encoders necessary
leftEncoder.setDirection(LEFT_ENCODER_DIRECTION);
rightEncoder.setDirection(RIGHT_ENCODER_DIRECTION);
strafeEncoder.setDirection(BACK_ENCODER_DIRECTION);
setStartPose(setStartPose);
timer = new NanoTimer();
deltaTimeNano = 1;
displacementPose = new Pose();
currentVelocity = new Pose();
totalHeading = 0;
resetEncoders();
}
/**
* This returns the current pose estimate.
*
* @return returns the current pose estimate as a Pose
*/
@Override
public Pose getPose() {
return MathFunctions.addPoses(startPose, displacementPose);
}
/**
* This returns the current velocity estimate.
*
* @return returns the current velocity estimate as a Pose
*/
@Override
public Pose getVelocity() {
return currentVelocity.copy();
}
/**
* This returns the current velocity estimate.
*
* @return returns the current velocity estimate as a Vector
*/
@Override
public Vector getVelocityVector() {
return currentVelocity.getVector();
}
/**
* This sets the start pose. Changing the start pose should move the robot as if all its
* previous movements were displacing it from its new start pose.
*
* @param setStart the new start pose
*/
@Override
public void setStartPose(Pose setStart) {
startPose = setStart;
}
/**
* This sets the Matrix that contains the previous pose's heading rotation.
*
* @param heading the rotation of the Matrix
*/
public void setPrevRotationMatrix(double heading) {
prevRotationMatrix = new Matrix(3,3);
prevRotationMatrix.set(0, 0, Math.cos(heading));
prevRotationMatrix.set(0, 1, -Math.sin(heading));
prevRotationMatrix.set(1, 0, Math.sin(heading));
prevRotationMatrix.set(1, 1, Math.cos(heading));
prevRotationMatrix.set(2, 2, 1.0);
}
/**
* This sets the current pose estimate. Changing this should just change the robot's current
* pose estimate, not anything to do with the start pose.
*
* @param setPose the new current pose estimate
*/
@Override
public void setPose(Pose setPose) {
displacementPose = MathFunctions.subtractPoses(setPose, startPose);
resetEncoders();
}
/**
* This updates the elapsed time timer that keeps track of time between updates, as well as the
* change position of the Encoders. Then, the robot's global change in position is calculated
* using the pose exponential method.
*/
@Override
public void update() {
deltaTimeNano = timer.getElapsedTime();
timer.resetTimer();
updateEncoders();
Matrix robotDeltas = getRobotDeltas();
Matrix globalDeltas;
setPrevRotationMatrix(getPose().getHeading());
Matrix transformation = new Matrix(3,3);
if (Math.abs(robotDeltas.get(2, 0)) < 0.001) {
transformation.set(0, 0, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
transformation.set(0, 1, -robotDeltas.get(2, 0) / 2.0);
transformation.set(1, 0, robotDeltas.get(2, 0) / 2.0);
transformation.set(1, 1, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
transformation.set(2, 2, 1.0);
} else {
transformation.set(0, 0, Math.sin(robotDeltas.get(2, 0)) / robotDeltas.get(2, 0));
transformation.set(0, 1, (Math.cos(robotDeltas.get(2, 0)) - 1.0) / robotDeltas.get(2, 0));
transformation.set(1, 0, (1.0 - Math.cos(robotDeltas.get(2, 0))) / robotDeltas.get(2, 0));
transformation.set(1, 1, Math.sin(robotDeltas.get(2, 0)) / robotDeltas.get(2, 0));
transformation.set(2, 2, 1.0);
}
globalDeltas = Matrix.multiply(Matrix.multiply(prevRotationMatrix, transformation), robotDeltas);
displacementPose.add(new Pose(globalDeltas.get(0, 0), globalDeltas.get(1, 0), globalDeltas.get(2, 0)));
currentVelocity = new Pose(globalDeltas.get(0, 0) / (deltaTimeNano * Math.pow(10.0, 9)), globalDeltas.get(1, 0) / (deltaTimeNano * Math.pow(10.0, 9)), globalDeltas.get(2, 0) / (deltaTimeNano * Math.pow(10.0, 9)));
totalHeading += globalDeltas.get(2, 0);
}
/**
* This updates the Encoders.
*/
public void updateEncoders() {
leftEncoder.update();
rightEncoder.update();
strafeEncoder.update();
}
/**
* This resets the Encoders.
*/
public void resetEncoders() {
leftEncoder.reset();
rightEncoder.reset();
strafeEncoder.reset();
}
/**
* This calculates the change in position from the perspective of the robot using information
* from the Encoders.
*
* @return returns a Matrix containing the robot relative movement.
*/
public Matrix getRobotDeltas() {
Matrix returnMatrix = new Matrix(3,1);
// x/forward movement
returnMatrix.set(0,0, FORWARD_TICKS_TO_INCHES * ((rightEncoder.getDeltaPosition() * leftEncoderPose.getY() - leftEncoder.getDeltaPosition() * rightEncoderPose.getY()) / (leftEncoderPose.getY() - rightEncoderPose.getY())));
//y/strafe movement
returnMatrix.set(1,0, STRAFE_TICKS_TO_INCHES * (strafeEncoder.getDeltaPosition() - strafeEncoderPose.getX() * ((rightEncoder.getDeltaPosition() - leftEncoder.getDeltaPosition()) / (leftEncoderPose.getY() - rightEncoderPose.getY()))));
// theta/turning
returnMatrix.set(2,0, TURN_TICKS_TO_RADIANS * ((rightEncoder.getDeltaPosition() - leftEncoder.getDeltaPosition()) / (leftEncoderPose.getY() - rightEncoderPose.getY())));
return returnMatrix;
}
/**
* This returns how far the robot has turned in radians, in a number not clamped between 0 and
* 2 * pi radians. This is used for some tuning things and nothing actually within the following.
*
* @return returns how far the robot has turned in total, in radians.
*/
public double getTotalHeading() {
return totalHeading;
}
/**
* This returns the multiplier applied to forward movement measurement to convert from encoder
* ticks to inches. This is found empirically through a tuner.
*
* @return returns the forward ticks to inches multiplier
*/
public double getForwardMultiplier() {
return FORWARD_TICKS_TO_INCHES;
}
/**
* This returns the multiplier applied to lateral/strafe movement measurement to convert from
* encoder ticks to inches. This is found empirically through a tuner.
*
* @return returns the lateral/strafe ticks to inches multiplier
*/
public double getLateralMultiplier() {
return STRAFE_TICKS_TO_INCHES;
}
/**
* This returns the multiplier applied to turning movement measurement to convert from encoder
* ticks to radians. This is found empirically through a tuner.
*
* @return returns the turning ticks to radians multiplier
*/
public double getTurningMultiplier() {
return TURN_TICKS_TO_RADIANS;
}
/**
* This does nothing since this localizer does not use the IMU.
*/
public void resetIMU() {
}
}

View File

@ -1,302 +0,0 @@
package org.firstinspires.ftc.teamcode.pedroPathing.localization.localizers;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_ENCODER;
import static org.firstinspires.ftc.teamcode.PedroConstants.LEFT_ENCODER;
import com.acmerobotics.dashboard.config.Config;
import com.qualcomm.hardware.rev.RevHubOrientationOnRobot;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import com.qualcomm.robotcore.hardware.HardwareMap;
import com.qualcomm.robotcore.hardware.IMU;
import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Encoder;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Localizer;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Matrix;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.MathFunctions;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Vector;
import org.firstinspires.ftc.teamcode.pedroPathing.util.NanoTimer;
/**
* This is the TwoWheelLocalizer class. This class extends the Localizer superclass and is a
* localizer that uses the two wheel odometry with IMU set up. The diagram below, which is modified from
* Road Runner, shows a typical set up.
*
* The view is from the top of the robot looking downwards.
*
* left on robot is the y positive direction
*
* forward on robot is the x positive direction
*
* /--------------\
* | ____ |
* | ---- |
* | || || |
* | || || | ----> left (y positive)
* | |
* | |
* \--------------/
* |
* |
* V
* forward (x positive)
*
* @author Anyi Lin - 10158 Scott's Bots
* @version 1.0, 4/2/2024
*/
@Config
public class TwoWheelLocalizer extends Localizer { // todo: make two wheel odo work
private HardwareMap hardwareMap;
private IMU imu;
private Pose startPose;
private Pose displacementPose;
private Pose currentVelocity;
private Matrix prevRotationMatrix;
private NanoTimer timer;
private long deltaTimeNano;
private Encoder forwardEncoder;
private Encoder strafeEncoder;
private Pose forwardEncoderPose;
private Pose strafeEncoderPose;
private double previousIMUOrientation;
private double deltaRadians;
private double totalHeading;
public static double FORWARD_TICKS_TO_INCHES = 8192 * 1.37795 * 2 * Math.PI * 0.5008239963;
public static double STRAFE_TICKS_TO_INCHES = 8192 * 1.37795 * 2 * Math.PI * 0.5018874659;
/**
* This creates a new TwoWheelLocalizer from a HardwareMap, with a starting Pose at (0,0)
* facing 0 heading.
*
* @param map the HardwareMap
*/
public TwoWheelLocalizer(HardwareMap map) {
this(map, new Pose());
}
/**
* This creates a new TwoWheelLocalizer from a HardwareMap and a Pose, with the Pose
* specifying the starting pose of the localizer.
*
* @param map the HardwareMap
* @param setStartPose the Pose to start from
*/
public TwoWheelLocalizer(HardwareMap map, Pose setStartPose) {
// TODO: replace these with your encoder positions
forwardEncoderPose = new Pose(-18.5/25.4 - 0.1, 164.4/25.4, 0);
strafeEncoderPose = new Pose(-107.9/25.4+0.25, -1.1/25.4-0.23, Math.toRadians(90));
hardwareMap = map;
imu = hardwareMap.get(IMU.class, "imu");
// TODO: replace this with your IMU's orientation
imu.initialize(new IMU.Parameters(new RevHubOrientationOnRobot(RevHubOrientationOnRobot.LogoFacingDirection.UP, RevHubOrientationOnRobot.UsbFacingDirection.LEFT)));
// TODO: replace these with your encoder ports
forwardEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, LEFT_ENCODER));
strafeEncoder = new Encoder(hardwareMap.get(DcMotorEx.class, BACK_ENCODER));
// TODO: reverse any encoders necessary
forwardEncoder.setDirection(Encoder.REVERSE);
strafeEncoder.setDirection(Encoder.FORWARD);
setStartPose(setStartPose);
timer = new NanoTimer();
deltaTimeNano = 1;
displacementPose = new Pose();
currentVelocity = new Pose();
previousIMUOrientation = MathFunctions.normalizeAngle(imu.getRobotYawPitchRollAngles().getYaw(AngleUnit.RADIANS));
deltaRadians = 0;
}
/**
* This returns the current pose estimate.
*
* @return returns the current pose estimate as a Pose
*/
@Override
public Pose getPose() {
return MathFunctions.addPoses(startPose, displacementPose);
}
/**
* This returns the current velocity estimate.
*
* @return returns the current velocity estimate as a Pose
*/
@Override
public Pose getVelocity() {
return currentVelocity.copy();
}
/**
* This returns the current velocity estimate.
*
* @return returns the current velocity estimate as a Vector
*/
@Override
public Vector getVelocityVector() {
return currentVelocity.getVector();
}
/**
* This sets the start pose. Changing the start pose should move the robot as if all its
* previous movements were displacing it from its new start pose.
*
* @param setStart the new start pose
*/
@Override
public void setStartPose(Pose setStart) {
startPose = setStart;
}
/**
* This sets the Matrix that contains the previous pose's heading rotation.
*
* @param heading the rotation of the Matrix
*/
public void setPrevRotationMatrix(double heading) {
prevRotationMatrix = new Matrix(3,3);
prevRotationMatrix.set(0, 0, Math.cos(heading));
prevRotationMatrix.set(0, 1, -Math.sin(heading));
prevRotationMatrix.set(1, 0, Math.sin(heading));
prevRotationMatrix.set(1, 1, Math.cos(heading));
prevRotationMatrix.set(2, 2, 1.0);
}
/**
* This sets the current pose estimate. Changing this should just change the robot's current
* pose estimate, not anything to do with the start pose.
*
* @param setPose the new current pose estimate
*/
@Override
public void setPose(Pose setPose) {
displacementPose = MathFunctions.subtractPoses(setPose, startPose);
resetEncoders();
}
/**
* This updates the elapsed time timer that keeps track of time between updates, as well as the
* change position of the Encoders and the IMU readings. Then, the robot's global change in
* position is calculated using the pose exponential method.
*/
@Override
public void update() {
deltaTimeNano = timer.getElapsedTime();
timer.resetTimer();
updateEncoders();
Matrix robotDeltas = getRobotDeltas();
Matrix globalDeltas;
setPrevRotationMatrix(getPose().getHeading());
Matrix transformation = new Matrix(3,3);
if (Math.abs(robotDeltas.get(2, 0)) < 0.001) {
transformation.set(0, 0, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
transformation.set(0, 1, -robotDeltas.get(2, 0) / 2.0);
transformation.set(1, 0, robotDeltas.get(2, 0) / 2.0);
transformation.set(1, 1, 1.0 - (Math.pow(robotDeltas.get(2, 0), 2) / 6.0));
transformation.set(2, 2, 1.0);
} else {
transformation.set(0, 0, Math.sin(robotDeltas.get(2, 0)) / robotDeltas.get(2, 0));
transformation.set(0, 1, (Math.cos(robotDeltas.get(2, 0)) - 1.0) / robotDeltas.get(2, 0));
transformation.set(1, 0, (1.0 - Math.cos(robotDeltas.get(2, 0))) / robotDeltas.get(2, 0));
transformation.set(1, 1, Math.sin(robotDeltas.get(2, 0)) / robotDeltas.get(2, 0));
transformation.set(2, 2, 1.0);
}
globalDeltas = Matrix.multiply(Matrix.multiply(prevRotationMatrix, transformation), robotDeltas);
displacementPose.add(new Pose(globalDeltas.get(0, 0), globalDeltas.get(1, 0), globalDeltas.get(2, 0)));
currentVelocity = new Pose(globalDeltas.get(0, 0) / (deltaTimeNano * Math.pow(10.0, 9)), globalDeltas.get(1, 0) / (deltaTimeNano * Math.pow(10.0, 9)), globalDeltas.get(2, 0) / (deltaTimeNano * Math.pow(10.0, 9)));
totalHeading += globalDeltas.get(2, 0);
}
/**
* This updates the Encoders as well as the IMU.
*/
public void updateEncoders() {
forwardEncoder.update();
strafeEncoder.update();
double currentIMUOrientation = MathFunctions.normalizeAngle(imu.getRobotYawPitchRollAngles().getYaw(AngleUnit.RADIANS));
deltaRadians = MathFunctions.getTurnDirection(previousIMUOrientation, currentIMUOrientation) * MathFunctions.getSmallestAngleDifference(currentIMUOrientation, previousIMUOrientation);
previousIMUOrientation = currentIMUOrientation;
}
/**
* This resets the Encoders.
*/
public void resetEncoders() {
forwardEncoder.reset();
strafeEncoder.reset();
}
/**
* This calculates the change in position from the perspective of the robot using information
* from the Encoders and IMU.
*
* @return returns a Matrix containing the robot relative movement.
*/
public Matrix getRobotDeltas() {
Matrix returnMatrix = new Matrix(3,1);
// x/forward movement
returnMatrix.set(0,0, FORWARD_TICKS_TO_INCHES * (forwardEncoder.getDeltaPosition() - forwardEncoderPose.getY() * deltaRadians));
//y/strafe movement
returnMatrix.set(1,0, STRAFE_TICKS_TO_INCHES * (strafeEncoder.getDeltaPosition() - strafeEncoderPose.getX() * deltaRadians));
// theta/turning
returnMatrix.set(2,0, deltaRadians);
return returnMatrix;
}
/**
* This returns how far the robot has turned in radians, in a number not clamped between 0 and
* 2 * pi radians. This is used for some tuning things and nothing actually within the following.
*
* @return returns how far the robot has turned in total, in radians.
*/
public double getTotalHeading() {
return totalHeading;
}
/**
* This returns the multiplier applied to forward movement measurement to convert from encoder
* ticks to inches. This is found empirically through a tuner.
*
* @return returns the forward ticks to inches multiplier
*/
public double getForwardMultiplier() {
return FORWARD_TICKS_TO_INCHES;
}
/**
* This returns the multiplier applied to lateral/strafe movement measurement to convert from
* encoder ticks to inches. This is found empirically through a tuner.
*
* @return returns the lateral/strafe ticks to inches multiplier
*/
public double getLateralMultiplier() {
return STRAFE_TICKS_TO_INCHES;
}
/**
* This returns the multiplier applied to turning movement measurement to convert from encoder
* ticks to radians. This is found empirically through a tuner.
*
* @return returns the turning ticks to radians multiplier
*/
public double getTurningMultiplier() {
return 1;
}
/**
* This resets the IMU.
*/
public void resetIMU() {
imu.resetYaw();
}
}

View File

@ -63,6 +63,7 @@ public class LateralTuner extends OpMode {
telemetryA.addData("distance moved", poseUpdater.getPose().getY()); telemetryA.addData("distance moved", poseUpdater.getPose().getY());
telemetryA.addLine("The multiplier will display what your strafe ticks to inches should be to scale your current distance to " + DISTANCE + " inches."); telemetryA.addLine("The multiplier will display what your strafe ticks to inches should be to scale your current distance to " + DISTANCE + " inches.");
telemetryA.addData("multiplier", DISTANCE / (poseUpdater.getPose().getY() / poseUpdater.getLocalizer().getLateralMultiplier())); telemetryA.addData("multiplier", DISTANCE / (poseUpdater.getPose().getY() / poseUpdater.getLocalizer().getLateralMultiplier()));
telemetryA.update(); telemetryA.update();
Drawing.drawPoseHistory(dashboardPoseTracker, "#4CAF50"); Drawing.drawPoseHistory(dashboardPoseTracker, "#4CAF50");

View File

@ -1,9 +1,5 @@
package org.firstinspires.ftc.teamcode.pedroPathing.localization.tuning; package org.firstinspires.ftc.teamcode.pedroPathing.localization.tuning;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.leftFrontMotorName; import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.leftFrontMotorName;
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.leftRearMotorName; import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.leftRearMotorName;
import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.rightFrontMotorName; import static org.firstinspires.ftc.teamcode.pedroPathing.tuning.FollowerConstants.rightFrontMotorName;
@ -62,11 +58,6 @@ public class LocalizationTest extends OpMode {
rightRear = hardwareMap.get(DcMotorEx.class, rightRearMotorName); rightRear = hardwareMap.get(DcMotorEx.class, rightRearMotorName);
rightFront = hardwareMap.get(DcMotorEx.class, rightFrontMotorName); rightFront = hardwareMap.get(DcMotorEx.class, rightFrontMotorName);
leftFront.setDirection(FRONT_LEFT_MOTOR_DIRECTION);
leftRear.setDirection(BACK_LEFT_MOTOR_DIRECTION);
rightFront.setDirection(FRONT_RIGHT_MOTOR_DIRECTION);
rightRear.setDirection(BACK_RIGHT_MOTOR_DIRECTION);
motors = Arrays.asList(leftFront, leftRear, rightFront, rightRear); motors = Arrays.asList(leftFront, leftRear, rightFront, rightRear);
for (DcMotorEx motor : motors) { for (DcMotorEx motor : motors) {

View File

@ -42,7 +42,7 @@ public class FollowerConstants {
public static CustomPIDFCoefficients translationalPIDFCoefficients = new CustomPIDFCoefficients( public static CustomPIDFCoefficients translationalPIDFCoefficients = new CustomPIDFCoefficients(
0.1, 0.1,
0, 0,
0.01, 0,
0); 0);
// Translational Integral // Translational Integral
@ -53,14 +53,14 @@ public class FollowerConstants {
0); 0);
// Feed forward constant added on to the translational PIDF // Feed forward constant added on to the translational PIDF
public static double translationalPIDFFeedForward = 0.00; public static double translationalPIDFFeedForward = 0.015;
// Heading error PIDF coefficients // Heading error PIDF coefficients
public static CustomPIDFCoefficients headingPIDFCoefficients = new CustomPIDFCoefficients( public static CustomPIDFCoefficients headingPIDFCoefficients = new CustomPIDFCoefficients(
2, 1,
0,
0, 0,
0.025,
0); 0);
// Feed forward constant added on to the heading PIDF // Feed forward constant added on to the heading PIDF
@ -69,10 +69,10 @@ public class FollowerConstants {
// Drive PIDF coefficients // Drive PIDF coefficients
public static CustomFilteredPIDFCoefficients drivePIDFCoefficients = new CustomFilteredPIDFCoefficients( public static CustomFilteredPIDFCoefficients drivePIDFCoefficients = new CustomFilteredPIDFCoefficients(
0.006, 0.025,
0, 0,
0.00001, 0.00001,
0.8, 0.6,
0); 0);
// Feed forward constant added on to the drive PIDF // Feed forward constant added on to the drive PIDF
@ -81,7 +81,7 @@ public class FollowerConstants {
// Kalman filter parameters for the drive error Kalman filter // Kalman filter parameters for the drive error Kalman filter
public static KalmanFilterParameters driveKalmanFilterParameters = new KalmanFilterParameters( public static KalmanFilterParameters driveKalmanFilterParameters = new KalmanFilterParameters(
6, 6,
3); 1);
// Mass of robot in kilograms // Mass of robot in kilograms
@ -202,9 +202,9 @@ public class FollowerConstants {
// Secondary drive PIDF coefficients // Secondary drive PIDF coefficients
public static CustomFilteredPIDFCoefficients secondaryDrivePIDFCoefficients = new CustomFilteredPIDFCoefficients( public static CustomFilteredPIDFCoefficients secondaryDrivePIDFCoefficients = new CustomFilteredPIDFCoefficients(
0.02, 0.00315,
0, 0,
0.000005, 0.0001,
0.6, 0.6,
0); 0);

View File

@ -93,13 +93,11 @@ public class ForwardVelocityTuner extends OpMode {
} }
telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry()); telemetryA = new MultipleTelemetry(this.telemetry, FtcDashboard.getInstance().getTelemetry());
// telemetryA.addLine("The robot will run at 1 power until it reaches " + DISTANCE + " inches forward."); telemetryA.addLine("The robot will run at 1 power until it reaches " + DISTANCE + " inches forward.");
// telemetryA.addLine("Make sure you have enough room, since the robot has inertia after cutting power."); telemetryA.addLine("Make sure you have enough room, since the robot has inertia after cutting power.");
// telemetryA.addLine("After running the distance, the robot will cut power from the drivetrain and display the forward velocity."); telemetryA.addLine("After running the distance, the robot will cut power from the drivetrain and display the forward velocity.");
// telemetryA.addLine("Press CROSS or A on game pad 1 to stop."); telemetryA.addLine("Press CROSS or A on game pad 1 to stop.");
// telemetryA.update();
//
// telemetryA.update();
} }
@ -140,13 +138,6 @@ public class ForwardVelocityTuner extends OpMode {
velocities.add(currentVelocity); velocities.add(currentVelocity);
velocities.remove(0); velocities.remove(0);
} }
telemetryA.addData("x", poseUpdater.getPose().getX());
telemetryA.addData("y", poseUpdater.getPose().getY());
telemetryA.addData("heading", poseUpdater.getPose().getHeading());
telemetryA.addData("velo mag", poseUpdater.getVelocity().getMagnitude());
telemetryA.addData("velo ", poseUpdater.getVelocity().getTheta());
telemetryA.update();
} else { } else {
double average = 0; double average = 0;
for (Double velocity : velocities) { for (Double velocity : velocities) {
@ -155,12 +146,7 @@ public class ForwardVelocityTuner extends OpMode {
average /= (double) velocities.size(); average /= (double) velocities.size();
telemetryA.addData("forward velocity:", average); telemetryA.addData("forward velocity:", average);
// telemetryA.addData("x", poseUpdater.getPose().getX()); telemetryA.update();
// telemetryA.addData("y", poseUpdater.getPose().getY());
// telemetryA.addData("heading", poseUpdater.getPose().getHeading());
// telemetryA.addData("velo mag", poseUpdater.getVelocity().getMagnitude());
// telemetryA.addData("velo ", poseUpdater.getVelocity().getTheta());
// telemetryA.update();
} }
} }
} }

View File

@ -119,6 +119,13 @@ public class LateralZeroPowerAccelerationTuner extends OpMode {
*/ */
@Override @Override
public void loop() { public void loop() {
telemetry.addData("x",poseUpdater.getPose().getX());
telemetry.addData("y",poseUpdater.getPose().getY());
telemetry.addData("heading",poseUpdater.getPose().getHeading());
telemetry.addData("velo mag", poseUpdater.getVelocity().getMagnitude());
telemetry.addData("velo theta", poseUpdater.getVelocity().getTheta());
if (gamepad1.cross || gamepad1.a) { if (gamepad1.cross || gamepad1.a) {
requestOpModeStop(); requestOpModeStop();
} }

View File

@ -1,18 +0,0 @@
package org.firstinspires.ftc.teamcode.states;
public class FieldStates {
public enum FieldLocation {
BUCKET, SUBMARINE, FLOATING, TRAVELING
}
private FieldLocation fieldLocation;
public FieldLocation getFieldLocation() {
return fieldLocation;
}
public void setFieldLocation(FieldLocation fieldLocation) {
this.fieldLocation = fieldLocation;
}
}

View File

@ -1,44 +0,0 @@
package org.firstinspires.ftc.teamcode.subsystem;
import androidx.annotation.NonNull;
import com.acmerobotics.dashboard.telemetry.TelemetryPacket;
import com.acmerobotics.roadrunner.Action;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathBuilder;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
/*
AutoLine# - This file does something of a path......
*/
public class AutoLine1 {
private PathChain pathChain;
private Pose autoLin1StartPose = new Pose(8,65);
public void moveToAutoLine1(Follower robot) {
PathBuilder builder = new PathBuilder();
builder
.addPath(
// Line 1
new BezierLine(
new Point(8.000, 65.000, Point.CARTESIAN),
new Point(30.000, 72.000, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0));
pathChain = builder.build();
robot.setStartingPose(autoLin1StartPose);
robot.followPath(pathChain);
}
}

View File

@ -1,40 +0,0 @@
package org.firstinspires.ftc.teamcode.subsystem;
import androidx.annotation.NonNull;
import com.acmerobotics.dashboard.telemetry.TelemetryPacket;
import com.acmerobotics.roadrunner.Action;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathBuilder;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
/*
AutoLine# - This file does something of a path......
*/
public class AutoLine2 {
private PathChain pathChain;
public void moveToAutoLine2(Follower robot) {
PathBuilder builder = new PathBuilder();
builder
.addPath(
// Line 2
new BezierCurve(
new Point(36.000, 72.000, Point.CARTESIAN),
new Point(24.000, 24.000, Point.CARTESIAN),
new Point(72.000, 36.000, Point.CARTESIAN),
new Point(56.000, 24.000, Point.CARTESIAN)
)
)
.setLinearHeadingInterpolation(Math.toRadians(0), Math.toRadians(180));
pathChain = builder.build();
robot.followPath(pathChain);
}
}

View File

@ -1,73 +0,0 @@
package org.firstinspires.ftc.teamcode.subsystem;
import androidx.annotation.NonNull;
import com.acmerobotics.dashboard.telemetry.TelemetryPacket;
import com.acmerobotics.roadrunner.Action;
import org.firstinspires.ftc.teamcode.pedroPathing.follower.Follower;
import org.firstinspires.ftc.teamcode.pedroPathing.localization.Pose;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierCurve;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.BezierLine;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathBuilder;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.PathChain;
import org.firstinspires.ftc.teamcode.pedroPathing.pathGeneration.Point;
/*
AutoLine# - This file does something of a path......
*/
public class AutoLine3 implements Action {
private Follower actionRobot;
private PathChain pathChain;
private Pose startPose = new Pose(56,24);
public AutoLine3(Follower robot) {
this.actionRobot = robot;
this.actionRobot.setStartingPose(startPose);
PathBuilder builder = new PathBuilder();
builder
/* .addPath(
// Line 1
new BezierLine(
new Point(8.000, 65.000, Point.CARTESIAN),
new Point(30.000, 72.000, Point.CARTESIAN)
// This is the origional new Point(36.000, 72.000, Point.CARTESIAN)
)
)
.setConstantHeadingInterpolation(Math.toRadians(0))
.addPath(
// Line 2
new BezierCurve(
new Point(36.000, 72.000, Point.CARTESIAN),
new Point(24.000, 24.000, Point.CARTESIAN),
new Point(72.000, 36.000, Point.CARTESIAN),
new Point(56.000, 24.000, Point.CARTESIAN)
)
)
.setLinearHeadingInterpolation(Math.toRadians(0), Math.toRadians(180)) */
.addPath(
// Line 3
new BezierLine(
new Point(56.000, 24.000, Point.CARTESIAN),
new Point(18.000, 24.000, Point.CARTESIAN)
)
)
.setTangentHeadingInterpolation();
pathChain = builder.build();
this.actionRobot.followPath(this.pathChain);
}
@Override
public boolean run(@NonNull TelemetryPacket telemetryPacket) {
this.actionRobot.update();
return this.actionRobot.isBusy();
}
}

View File

@ -1,105 +0,0 @@
package org.firstinspires.ftc.teamcode.subsystem;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.BACK_RIGHT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_LEFT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR;
import static org.firstinspires.ftc.teamcode.PedroConstants.FRONT_RIGHT_MOTOR_DIRECTION;
import static org.firstinspires.ftc.teamcode.PedroConstants.MAX_POWER;
import androidx.annotation.NonNull;
import com.acmerobotics.dashboard.telemetry.TelemetryPacket;
import com.acmerobotics.roadrunner.Action;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.hardware.Gamepad;
import com.qualcomm.robotcore.hardware.HardwareMap;
import org.firstinspires.ftc.robotcore.external.Telemetry;
public class MotorsSubsystem {
public HardwareMap hardwareMap;
public Telemetry telemetry;
public DcMotor frontLeftMotor;
public DcMotor backLeftMotor;
public DcMotor frontRightMotor;
public DcMotor backRightMotor;
public enum TravelState {
STOPPED, MOVING
}
public TravelState travelState;
public double power;
public MotorsSubsystem(HardwareMap hardwareMap, Telemetry telemetry) {
this.hardwareMap = hardwareMap;
this.telemetry = telemetry;
this.power = MAX_POWER;
}
public MotorsSubsystem(HardwareMap hardwareMap, Telemetry telemetry, double power) {
this.hardwareMap = hardwareMap;
this.telemetry = telemetry;
this.power = power;
}
public void init() {
frontLeftMotor = hardwareMap.get(DcMotor.class, FRONT_LEFT_MOTOR);
backLeftMotor = hardwareMap.get(DcMotor.class, BACK_LEFT_MOTOR);
frontRightMotor = hardwareMap.get(DcMotor.class, FRONT_RIGHT_MOTOR);
backRightMotor = hardwareMap.get(DcMotor.class, BACK_RIGHT_MOTOR);
frontLeftMotor.setDirection(FRONT_LEFT_MOTOR_DIRECTION);
backLeftMotor.setDirection(BACK_LEFT_MOTOR_DIRECTION);
frontRightMotor.setDirection(FRONT_RIGHT_MOTOR_DIRECTION);
backRightMotor.setDirection(BACK_RIGHT_MOTOR_DIRECTION);
frontLeftMotor.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
backLeftMotor.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
frontRightMotor.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
backRightMotor.setZeroPowerBehavior(DcMotor.ZeroPowerBehavior.BRAKE);
this.setState(TravelState.STOPPED);
}
public void setFrontLeftMotorPower(double power) {
frontLeftMotor.setPower(power);
}
public void setBackLeftMotorPower(double power) {
backLeftMotor.setPower(power);
}
public void setFrontRightMotorPower(double power) {
frontRightMotor.setPower(power);
}
public void setBackRightMotorPower(double power) {
backRightMotor.setPower(power);
}
public void setState(TravelState travelState) {
this.travelState = travelState;
}
public TravelState getState() {
return this.travelState;
}
public void setPower(DcMotor motor, double power) {
motor.setPower(power);
if (power < 0.05) {
this.setState(TravelState.MOVING);
} else {
this.setState(TravelState.STOPPED);
}
}
}

View File

@ -16,9 +16,6 @@ dependencies {
implementation 'org.firstinspires.ftc:Vision:10.1.0' implementation 'org.firstinspires.ftc:Vision:10.1.0'
implementation 'androidx.appcompat:appcompat:1.2.0' implementation 'androidx.appcompat:appcompat:1.2.0'
implementation "com.acmerobotics.roadrunner:ftc:0.1.14" implementation 'com.acmerobotics.dashboard:dashboard:0.4.5'
implementation "com.acmerobotics.roadrunner:core:1.0.0"
implementation "com.acmerobotics.roadrunner:actions:1.0.0"
implementation "com.acmerobotics.dashboard:dashboard:0.4.16"
} }