2 Commits

2 changed files with 335 additions and 0 deletions

View File

@ -0,0 +1,193 @@
package org.firstinspires.ftc.teamcode;
import androidx.annotation.NonNull;
import com.acmerobotics.dashboard.config.Config;
import com.acmerobotics.dashboard.telemetry.TelemetryPacket;
import com.acmerobotics.roadrunner.Action;
import com.acmerobotics.roadrunner.Pose2d;
import com.acmerobotics.roadrunner.SequentialAction;
import com.acmerobotics.roadrunner.Vector2d;
import com.acmerobotics.roadrunner.ftc.Actions;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.hardware.DcMotorEx;
import org.firstinspires.ftc.teamcode.MecanumDrive;
import com.qualcomm.robotcore.hardware.DcMotorSimple;
import com.qualcomm.robotcore.hardware.HardwareMap;
import com.qualcomm.robotcore.hardware.Servo;
@Config
@Autonomous(name = "BLUE_TEST_AUTO_PIXEL", group = "Autonomous")
public class AutoDrive extends LinearOpMode {
public class Lift {
private DcMotorEx lift;
public Lift(HardwareMap hardwareMap) {
lift = hardwareMap.get(DcMotorEx.class, "liftMotor");
lift.setZeroPowerBehavior(DcMotorEx.ZeroPowerBehavior.BRAKE);
lift.setDirection(DcMotorSimple.Direction.FORWARD);
}
public class LiftUp implements Action {
private boolean initialized = false;
@Override
public boolean run(@NonNull TelemetryPacket packet) {
if (!initialized) {
lift.setPower(0.8);
initialized = true;
}
double pos = lift.getCurrentPosition();
packet.put("liftPos", pos);
if (pos < 3000.0) {
return true;
} else {
lift.setPower(0);
return false;
}
}
}
public Action liftUp() {
return new LiftUp();
}
public class LiftDown implements Action {
private boolean initialized = false;
@Override
public boolean run(@NonNull TelemetryPacket packet) {
if (!initialized) {
lift.setPower(-0.8);
initialized = true;
}
double pos = lift.getCurrentPosition();
packet.put("liftPos", pos);
if (pos > 100.0) {
return true;
} else {
lift.setPower(0);
return false;
}
}
}
public Action liftDown(){
return new LiftDown();
}
}
public class Claw {
private Servo claw;
public Claw(HardwareMap hardwareMap) {
claw = hardwareMap.get(Servo.class, "claw");
}
public class CloseClaw implements Action {
@Override
public boolean run(@NonNull TelemetryPacket packet) {
claw.setPosition(0.55);
return false;
}
}
public Action closeClaw() {
return new CloseClaw();
}
public class OpenClaw implements Action {
@Override
public boolean run(@NonNull TelemetryPacket packet) {
claw.setPosition(1.0);
return false;
}
}
public Action openClaw() {
return new OpenClaw();
}
}
@Override
public void runOpMode() {
MecanumDrive drive = new MecanumDrive(hardwareMap, new Pose2d(11.8, 61.7, Math.toRadians(90)));
Claw claw = new Claw(hardwareMap);
Lift lift = new Lift(hardwareMap);
// vision here that outputs position
int visionOutputPosition = 1;
Action trajectoryAction1;
Action trajectoryAction2;
Action trajectoryAction3;
Action trajectoryActionCloseOut;
trajectoryAction1 = drive.actionBuilder(drive.pose)
.lineToYSplineHeading(33, Math.toRadians(0))
.waitSeconds(2)
.setTangent(Math.toRadians(90))
.lineToY(48)
.setTangent(Math.toRadians(0))
.lineToX(32)
.strafeTo(new Vector2d(44.5, 30))
.turn(Math.toRadians(180))
.lineToX(47.5)
.waitSeconds(3)
.build();
trajectoryAction2 = drive.actionBuilder(drive.pose)
.lineToY(37)
.setTangent(Math.toRadians(0))
.lineToX(18)
.waitSeconds(3)
.setTangent(Math.toRadians(0))
.lineToXSplineHeading(46, Math.toRadians(180))
.waitSeconds(3)
.build();
trajectoryAction3 = drive.actionBuilder(drive.pose)
.lineToYSplineHeading(33, Math.toRadians(180))
.waitSeconds(2)
.strafeTo(new Vector2d(46, 30))
.waitSeconds(3)
.build();
trajectoryActionCloseOut = drive.actionBuilder(drive.pose)
.strafeTo(new Vector2d(48, 12))
.build();
// actions that need to happen on init; for instance, a claw tightening.
Actions.runBlocking(claw.closeClaw());
while (!isStopRequested() && !opModeIsActive()) {
int position = visionOutputPosition;
telemetry.addData("Position during Init", position);
telemetry.update();
}
int startPosition = visionOutputPosition;
telemetry.addData("Starting Position", startPosition);
telemetry.update();
waitForStart();
if (isStopRequested()) return;
Action trajectoryActionChosen;
if (startPosition == 1) {
trajectoryActionChosen = trajectoryAction1;
} else if (startPosition == 2) {
trajectoryActionChosen = trajectoryAction2;
} else {
trajectoryActionChosen = trajectoryAction3;
}
Actions.runBlocking(
new SequentialAction(
trajectoryActionChosen,
lift.liftUp(),
claw.openClaw(),
lift.liftDown(),
trajectoryActionCloseOut
)
);
}
}

View File

@ -0,0 +1,142 @@
/* Copyright (c) 2022 FIRST. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided that
* the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.firstinspires.ftc.teamcode;
import com.qualcomm.hardware.rev.RevHubOrientationOnRobot;
import com.qualcomm.robotcore.eventloop.opmode.Disabled;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.hardware.IMU;
import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
import org.firstinspires.ftc.robotcore.external.navigation.AngularVelocity;
import org.firstinspires.ftc.robotcore.external.navigation.YawPitchRollAngles;
/*
* This OpMode shows how to use the new universal IMU interface. This
* interface may be used with the BNO055 IMU or the BHI260 IMU. It assumes that an IMU is configured
* on the robot with the name "imu".
*
* The sample will display the current Yaw, Pitch and Roll of the robot.<br>
* With the correct orientation parameters selected, pitch/roll/yaw should act as follows:
* Pitch value should INCREASE as the robot is tipped UP at the front. (Rotation about X) <br>
* Roll value should INCREASE as the robot is tipped UP at the left side. (Rotation about Y) <br>
* Yaw value should INCREASE as the robot is rotated Counter Clockwise. (Rotation about Z) <br>
*
* The yaw can be reset (to zero) by pressing the Y button on the gamepad (Triangle on a PS4 controller)
*
* This specific sample assumes that the Hub is mounted on one of the three orthogonal planes
* (X/Y, X/Z or Y/Z) and that the Hub has only been rotated in a range of 90 degree increments.
*
* Note: if your Hub is mounted on a surface angled at some non-90 Degree multiple (like 30) look at
* the alternative SensorImuNonOrthogonal sample in this folder.
*
* This "Orthogonal" requirement means that:
*
* 1) The Logo printed on the top of the Hub can ONLY be pointing in one of six directions:
* FORWARD, BACKWARD, UP, DOWN, LEFT and RIGHT.
*
* 2) The USB ports can only be pointing in one of the same six directions:<br>
* FORWARD, BACKWARD, UP, DOWN, LEFT and RIGHT.
*
* So, To fully define how your Hub is mounted to the robot, you must simply specify:<br>
* logoFacingDirection<br>
* usbFacingDirection
*
* Use Android Studio to Copy this Class, and Paste it into your team's code folder with a new name.
* Remove or comment out the @Disabled line to add this OpMode to the Driver Station OpMode list.
*
* Finally, choose the two correct parameters to define how your Hub is mounted and edit this OpMode
* to use those parameters.
*/
@TeleOp(name = "Sensor: IMU Orthogonal", group = "Sensor")
public class SensorIMUOrthogonal extends LinearOpMode
{
// The IMU sensor object
IMU imu;
//----------------------------------------------------------------------------------------------
// Main logic
//----------------------------------------------------------------------------------------------
@Override public void runOpMode() throws InterruptedException {
// Retrieve and initialize the IMU.
// This sample expects the IMU to be in a REV Hub and named "imu".
imu = hardwareMap.get(IMU.class, "imu");
/* Define how the hub is mounted on the robot to get the correct Yaw, Pitch and Roll values.
*
* Two input parameters are required to fully specify the Orientation.
* The first parameter specifies the direction the printed logo on the Hub is pointing.
* The second parameter specifies the direction the USB connector on the Hub is pointing.
* All directions are relative to the robot, and left/right is as-viewed from behind the robot.
*/
/* The next two lines define Hub orientation.
* The Default Orientation (shown) is when a hub is mounted horizontally with the printed logo pointing UP and the USB port pointing FORWARD.
*
* To Do: EDIT these two lines to match YOUR mounting configuration.
*/
RevHubOrientationOnRobot.LogoFacingDirection logoDirection = RevHubOrientationOnRobot.LogoFacingDirection.DOWN;
RevHubOrientationOnRobot.UsbFacingDirection usbDirection = RevHubOrientationOnRobot.UsbFacingDirection.RIGHT;
RevHubOrientationOnRobot orientationOnRobot = new RevHubOrientationOnRobot(logoDirection, usbDirection);
// Now initialize the IMU with this mounting orientation
// Note: if you choose two conflicting directions, this initialization will cause a code exception.
imu.initialize(new IMU.Parameters(orientationOnRobot));
// Loop and update the dashboard
while (!isStopRequested()) {
telemetry.addData("Hub orientation", "Logo=%s USB=%s\n ", logoDirection, usbDirection);
// Check to see if heading reset is requested
if (gamepad1.y) {
telemetry.addData("Yaw", "Resetting\n");
imu.resetYaw();
} else {
telemetry.addData("Yaw", "Press Y (triangle) on Gamepad to reset\n");
}
// Retrieve Rotational Angles and Velocities
YawPitchRollAngles orientation = imu.getRobotYawPitchRollAngles();
AngularVelocity angularVelocity = imu.getRobotAngularVelocity(AngleUnit.DEGREES);
telemetry.addData("Yaw (Z)", "%.2f Deg. (Heading)", orientation.getYaw(AngleUnit.DEGREES));
telemetry.addData("Pitch (X)", "%.2f Deg.", orientation.getPitch(AngleUnit.DEGREES));
telemetry.addData("Roll (Y)", "%.2f Deg.\n", orientation.getRoll(AngleUnit.DEGREES));
telemetry.addData("Yaw (Z) velocity", "%.2f Deg/Sec", angularVelocity.zRotationRate);
telemetry.addData("Pitch (X) velocity", "%.2f Deg/Sec", angularVelocity.xRotationRate);
telemetry.addData("Roll (Y) velocity", "%.2f Deg/Sec", angularVelocity.yRotationRate);
telemetry.update();
}
}
}