diff --git a/TeamCode/src/main/java/org/firstinspires/ftc/teamcode/SensorIMUOrthogonal.java b/TeamCode/src/main/java/org/firstinspires/ftc/teamcode/SensorIMUOrthogonal.java
new file mode 100644
index 0000000..f143267
--- /dev/null
+++ b/TeamCode/src/main/java/org/firstinspires/ftc/teamcode/SensorIMUOrthogonal.java
@@ -0,0 +1,144 @@
+/* Copyright (c) 2022 FIRST. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted (subject to the limitations in the disclaimer below) provided that
+ * the following conditions are met:
+ *
+ * Redistributions of source code must retain the above copyright notice, this list
+ * of conditions and the following disclaimer.
+ *
+ * Redistributions in binary form must reproduce the above copyright notice, this
+ * list of conditions and the following disclaimer in the documentation and/or
+ * other materials provided with the distribution.
+ *
+ * Neither the name of FIRST nor the names of its contributors may be used to endorse or
+ * promote products derived from this software without specific prior written permission.
+ *
+ * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
+ * LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
+ * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+package org.firstinspires.ftc.teamcode;
+
+import com.qualcomm.hardware.rev.RevHubOrientationOnRobot;
+import com.qualcomm.robotcore.eventloop.opmode.Disabled;
+import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
+import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
+import com.qualcomm.robotcore.hardware.IMU;
+
+import org.firstinspires.ftc.robotcore.external.navigation.AngleUnit;
+import org.firstinspires.ftc.robotcore.external.navigation.AngularVelocity;
+import org.firstinspires.ftc.robotcore.external.navigation.YawPitchRollAngles;
+
+/*
+ * This OpMode shows how to use the new universal IMU interface. This
+ * interface may be used with the BNO055 IMU or the BHI260 IMU. It assumes that an IMU is configured
+ * on the robot with the name "imu".
+ *
+ * The sample will display the current Yaw, Pitch and Roll of the robot.
+ * With the correct orientation parameters selected, pitch/roll/yaw should act as follows:
+ * Pitch value should INCREASE as the robot is tipped UP at the front. (Rotation about X)
+ * Roll value should INCREASE as the robot is tipped UP at the left side. (Rotation about Y)
+ * Yaw value should INCREASE as the robot is rotated Counter Clockwise. (Rotation about Z)
+ *
+ * The yaw can be reset (to zero) by pressing the Y button on the gamepad (Triangle on a PS4 controller)
+ *
+ * This specific sample assumes that the Hub is mounted on one of the three orthogonal planes
+ * (X/Y, X/Z or Y/Z) and that the Hub has only been rotated in a range of 90 degree increments.
+ *
+ * Note: if your Hub is mounted on a surface angled at some non-90 Degree multiple (like 30) look at
+ * the alternative SensorImuNonOrthogonal sample in this folder.
+ *
+ * This "Orthogonal" requirement means that:
+ *
+ * 1) The Logo printed on the top of the Hub can ONLY be pointing in one of six directions:
+ * FORWARD, BACKWARD, UP, DOWN, LEFT and RIGHT.
+ *
+ * 2) The USB ports can only be pointing in one of the same six directions:
+ * FORWARD, BACKWARD, UP, DOWN, LEFT and RIGHT.
+ *
+ * So, To fully define how your Hub is mounted to the robot, you must simply specify:
+ * logoFacingDirection
+ * usbFacingDirection
+ *
+ * Use Android Studio to Copy this Class, and Paste it into your team's code folder with a new name.
+ * Remove or comment out the @Disabled line to add this OpMode to the Driver Station OpMode list.
+ *
+ * Finally, choose the two correct parameters to define how your Hub is mounted and edit this OpMode
+ * to use those parameters.
+ */
+@TeleOp(name = "Sensor: IMU Orthogonal", group = "Sensor")
+@Disabled // Comment this out to add to the OpMode list
+public class SensorIMUOrthogonal extends LinearOpMode
+{
+ // The IMU sensor object
+ IMU imu;
+
+ //----------------------------------------------------------------------------------------------
+ // Main logic
+ //----------------------------------------------------------------------------------------------
+
+ @Override public void runOpMode() throws InterruptedException {
+
+ // Retrieve and initialize the IMU.
+ // This sample expects the IMU to be in a REV Hub and named "imu".
+ imu = hardwareMap.get(IMU.class, "imu");
+
+ /* Define how the hub is mounted on the robot to get the correct Yaw, Pitch and Roll values.
+ *
+ * Two input parameters are required to fully specify the Orientation.
+ * The first parameter specifies the direction the printed logo on the Hub is pointing.
+ * The second parameter specifies the direction the USB connector on the Hub is pointing.
+ * All directions are relative to the robot, and left/right is as-viewed from behind the robot.
+ */
+
+ /* The next two lines define Hub orientation.
+ * The Default Orientation (shown) is when a hub is mounted horizontally with the printed logo pointing UP and the USB port pointing FORWARD.
+ *
+ * To Do: EDIT these two lines to match YOUR mounting configuration.
+ */
+ RevHubOrientationOnRobot.LogoFacingDirection logoDirection = RevHubOrientationOnRobot.LogoFacingDirection.UP;
+ RevHubOrientationOnRobot.UsbFacingDirection usbDirection = RevHubOrientationOnRobot.UsbFacingDirection.FORWARD;
+
+ RevHubOrientationOnRobot orientationOnRobot = new RevHubOrientationOnRobot(logoDirection, usbDirection);
+
+ // Now initialize the IMU with this mounting orientation
+ // Note: if you choose two conflicting directions, this initialization will cause a code exception.
+ imu.initialize(new IMU.Parameters(orientationOnRobot));
+
+ // Loop and update the dashboard
+ while (!isStopRequested()) {
+
+ telemetry.addData("Hub orientation", "Logo=%s USB=%s\n ", logoDirection, usbDirection);
+
+ // Check to see if heading reset is requested
+ if (gamepad1.y) {
+ telemetry.addData("Yaw", "Resetting\n");
+ imu.resetYaw();
+ } else {
+ telemetry.addData("Yaw", "Press Y (triangle) on Gamepad to reset\n");
+ }
+
+ // Retrieve Rotational Angles and Velocities
+ YawPitchRollAngles orientation = imu.getRobotYawPitchRollAngles();
+ AngularVelocity angularVelocity = imu.getRobotAngularVelocity(AngleUnit.DEGREES);
+
+ telemetry.addData("Yaw (Z)", "%.2f Deg. (Heading)", orientation.getYaw(AngleUnit.DEGREES));
+ telemetry.addData("Pitch (X)", "%.2f Deg.", orientation.getPitch(AngleUnit.DEGREES));
+ telemetry.addData("Roll (Y)", "%.2f Deg.\n", orientation.getRoll(AngleUnit.DEGREES));
+ telemetry.addData("Yaw (Z) velocity", "%.2f Deg/Sec", angularVelocity.zRotationRate);
+ telemetry.addData("Pitch (X) velocity", "%.2f Deg/Sec", angularVelocity.xRotationRate);
+ telemetry.addData("Roll (Y) velocity", "%.2f Deg/Sec", angularVelocity.yRotationRate);
+ telemetry.update();
+ }
+ }
+}